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CHAPTER

The two main jobs of a computer are 1/0 and processing. In many cases, the
main job is /0, and the processing is merely incidental. For instance, when
we browse a web page or edit a file, our immediate interest is to read or enter
some information, not to <ompute an answer.

The role of the operating system in computer 1/0 is to manage and
control 1/0 operations and 1/0 devices. Although related topics appear in
other chapters, here we bring together the pieces to paint a complete picture
of 1/0. First, we describe the basics of I/0 hardware, because the nature of
the hardware interface places requirements on the internal facilities of the
operating system. Next, we discuss the 1/0 services provided by the operating
system and the embodiment of these services in the application 1/0 interface.
Then, we explain how the operating system bridges the gap between the
hardware interface and the application interface. We also discuss the UNIX
System V STREAMS mechanism, which enables an application to assemble
pipelines of driver code dynamically. Finally, we discuss the performance
aspects of 1/0 and the principles of operating-system design that improve
1/0 performance.

Unveep e

The control of devices connected to the computer is a major concern of
operating-system designers. Because /0O devices vary so widely in their
function and speed (consider a mouse, a hard disk, and a CD-ROM jukebox),
varied methods are needed to control them. These methods form the 1O
subsystem of the kernel, which separates the rest of the kernel from the
complexities of managing 1/0 devices.

I/0-device technology exhibits two conflicting trends. On one hand, we
see increasing standardization of software and hardware interfaces. This trend
helps us to incorporate improved device generations into existing computers
and operating systems. On the other hand, we see an increasingly broad variety
of 1/0 devices. Some new devices are so unlike previous devices that it is a
challenge to incorporate them into our computers and operating systems. This
challenge is met by a combination of hardware and software techniques. The
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basic 1/0 hardware elements, such as ports, buses, and device controllers,
accommodate a wide variety of 1/0 devices. To encapsulate the details and
oddities of different 'devices, the kernel of an operating system is structured
to use device-driver modules. The device drivers present a uniform device-
access interface to the I/0 subsystem, much as system calls provide a standard
interface between the apptlication and the operating system.

oy iarchwsr e

Computers operate a great many kinds of devices. Most fit into the general
categories of storage devices (disks, tapes), transmission devices (network
cards, modems), and human-interface devices (screen, keyboard, mouse).
Other devices are more specialized, such as the steering of a military fighter jet
or a space shuttle. In these aircraft, a human gives input to the tlight computer
via a joystick and foot pedals, and the computer sends output commands that
cause motors to move rudders, flaps, and thrusters. Despite the incredible
variety of 1/0 devices, though, we need only a few concepts to understand
how the devices are attached and how the software can contro] the hardware.

A device communicates with a computer system by sending signals over
a cable or even through the air. The device communicates with the machine
via a connection point (or port)—for example, a serial port. If devices use a
common set of wires, the connection is called a bus. A bus is a set of wires and
a rigidly defined protocol that specifies a set of messages that can be sent on
the wires. In terms of the electronics, the messages are conveyed by patterns
of electrical voltages applied to the wires with defined timings. When device
A has a cable that plugs into device B, and device B has a cable that plugs into
device C, and device C plugs into a port on the computer, this arrangement is
called a daisy chain. A daisy chain usually operates as a bus.

Buses are used widely in computer architecture. A typical PC bus structure
appears in Figure 13.1. This figure shows a PCI bus (the common PC system
bus) that connects the processor—memory subsystem to the fast devices and an
expansion bus that connects relatively slow devices such as the keyboard and
serial and parallel ports. In the upper-right portion of the figure, four disks are
connected together on a SCSI bus plugged into a SCS1 controller.

A controller is a collection of electronics that can operate a port, a bus,
or a device. A serial-port controller is a simple device controller. It is a single
chip (or portion of a chip) in the computer that controls the signals on the
wires of a serial port. By contrast, a SCSl bus controller is not simple. Because
the SCSI protocol is complex, the SCSI bus controller is often implemented as
a separate circuit board (or a host adapter) that plugs into the computer. It
typically contains a processor, microcode, and some private memory to enable
it to process the SCSI protocol messages. Some devices have their own built-in
controllers. If you look at a disk drive, you will see a circuit board attached
to one side. This board is the disk controller. It implements the disk side of
the protocol for some kind of connection~-SCSI or ATA, for instance. It has
microcode and a processor to do many tasks, such as bad-sector mapping,
prefetching, buffering, and caching.

How can the processor give commands and data to a controller to
accomplish an 1/0 transfer? The short answer is that the controiler has one
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Figure 13.1 A typical PC bus structure.

or more registers for data and control signals. The processor communicates
with the controller by reading and writing bit patterns in these registers. One
way in which this communication can occur is through the use of special
1/0 instructions that specify the transfer of a byte or word to an 1/0 port
address. The I/0 instruction triggers bus lines to select the proper device and
to move bits into or out of a device register. Alternatively, the device controller
can support memory-mapped I/0. In this case, the device-control registers
are mapped into the address space of the processor. The CPU executes 1/0
requests using the standard data-transfer instructions to read and write the
device-control registers.”

Some systems use both techniques. For instance, PCs use I/Q instructions
to control some devices and memory-mapped [/0 to control others. Figure
13.2 shows the usual 1/0 port addresses for PCs. The graphics controller has
1/0 ports for basic control operations, but the controller has a large memory-
mapped region to hold screen contents. The process sends output to the screen
by writing data into the memory-mapped region. The controller generates
the screen image based on the contents of this memory. This technique is
simple to "1se. Moreover, writing millions of bytes to the graphics memory
is faster than issuing millions of 1/0 instructions. But the ease of writing
to a memory-mapped 1/0 controller is offset by a disadvantage. Because a
common type of software fault is a write through an incorrect pointer to an
unintended region of memory, a memory-mapped device register is vulnerable
to accidental modification. Of course, protected memory helps to reduce this
risk.

An 1/0 port typically consists of four registers, called the (1) status, (2)
control, (3} data-in, and (4) data-out registers.
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DMA controlier

020021 interrupt controller
040-043 ‘timer

! 200-20F game controller
2FB8-2FF serial port (secondary)
320-32F hard-digk controller
378-37F paraliel port
3D0-3DF graphics controiler
3F0-3F7 diskette-drive controller
3F8-3FF seriai port (primary)

Figure 13.2 Device /O port locations on PCs (partial).

* The data-in register is read by the host to get input.
* The data-out register is written by the host to send output.

* The status register contains bits that can be read by the host. These bits
indicate slates, such as whether the current command has completed,
whether abyte is available to be read from the data-in register, and whether
a device error has occurred.

« The control register can be written by the host to start a command or to
change the mode of a device. For instance, a certain bit in the control
register of a serial port chooses between full-duplex and half-duplex
communication, another bit enables parity checking, a third bit sets the
word length to 7 or 8 bits, and other bits select one of the speeds supported
by the serial port.

The data registers are typically 1 to 4 bytes in size. Some controllers have
FIFO chips that can hold several bytes of input or output data to expand the
capacity of the controller beyond the size of the data register. A FIFO chip can
hold a small burst of data until the device or host is able to receive those data.

13.2.1 Polling

The complete protocol for interaction between the host and a controller can be
intricate, but the basic handshaking notion is simple. We explain handshaking
with an example. We assume that 2 bits are used to coordinate the producer
—consumer relationship between the controller and the host. The controller
indicates its state through the busy bit in the status register. (Recall that to sef a
bit means to write a 1 into the bit and to clear a bit means to write a 0 into it.)
The controller sets the busy bit when it is busy working and clears the busy bit
when it is ready to accept the next command. The host signals its wishes via the
command-ready bit in the command register. The host sets the command-ready bit
when a command is available for the controller to execute. For this example,
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the host writes output through a port, coordinating with the controller by
handshaking as follows.

t. The host repeatedly reads the busy bit until that bit becomes clear.

The host sets the write bit in the command register and writes a byte into
the data-out register.

The host sets the command-ready bit.

When the controller notices that the command-ready bit is set, it sets the
busy bit.

The controller reads the command register and sees the write command.
1t reads the dafa-out register to get the byte and does the 1/0 to the device.

~. The controller clears the command-ready bit, clears the error bit in the status
register to indicate that the device 170 succeeded, and clears the busy bit
to indicate that it is finished.

This loap is repeated for each byte.

In step 1, the host is busy-waiting or polling: It is in a loop, reading the
stafus register over and over until the busy bit becomes clear. If the controller
and device are fast, this method is a reasonable one. But if the wait may be
long, the host should probably switch to another task. How, then, does the
host know when the controller has become idle? For some devices, the host
must service the device quickly, or data will be lost. For instance, when data
are streaming in on a serial port or from a keyboard, the small buffer on the
controller will overflow and data will be lost if the host waits too long before
returning to read the bytes.

In many computer architectures, three CPU-instruction cycles are sufficient
to poll a device: read a device register, logical-and to extract a status bit, and
branch if not zero. Clearly, the basic polling operation is efficient. But polling
becomes inefficient when it is attempted repeatedly yet rareiy finds a device
to be ready for service, while other useful CPU processing remains undone. In
such instances, it may be more efficient to arrange for the hardware controller to
notify the CPU when the device becomes ready for service, rather than to require
the CPU to poll repeatedly for an I/O completion. The hardware mechanism
that enables a device to notify the CPU js called an interrupt.

13.2.2 Interrupts

The basic interrupt mechanism works as follows. The CPU hardware has a wire
called the interrupt-request line that the CPU senses after executing every
instruction. When the CPU detects that a controller has asserted a signal on the
interrupt request line, the CPU performs a state save and jumps to the interrupt-
handler routine at a fixed address in memory. The interrupt handler determines
the cause of the interrupt, performs the necessary processing, performs a
state restore, and executes a return from interrupt instruction to return
the CPU to the execution state prior to the interrupt. We say that the device
controller raises an interrupt by asserting a signal on the interrupt request line,
the CPU caiches the interrupt and dispatches it to the interrupt handler, and the
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Figure 13.3 Interrupt-driven IO cycle.

handler clears the interrupt by servicing the device. Figure 13.3 summarizes
the interrupt-driven 1/0 cycle.

This basic interrupt mechanism enables the CPU to respond to an asyn-
chronous event, as when a device controller becomes ready for service. In a
modern operating system, however, we need more sophisticated interrupt-
handling features.

We need the ability to defer interrupt handling during critical processing.

We need an efficient way to dispatch to the proper interrupt handler for
a device without first polling all the devices to see which one raised the
interrupt.

We need multilevel interrupts, so that the operating system can distin-
guish between high- and low-priority interrupts and can respond with
the appropriate degree of urgency.

In modern computer hardware, these three features are provided by the CPU
and by the interrupt-controller hardware.

Most CPUs have two interrupt request lines. One is the nonmaskable
interrupt, which is reserved for events such as unrecoverable memory errors.
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The second interrupt line is maskable: It can be turned off by the CPU before
the execution of critical instruction sequences that must not be interrupted.
The maskable interrupt is used by device controllers to request service.

The interrupt mechanism accepts an address—a number that selects a
specific interrupt-handling routine from a small set. In most architectures, this
address is an offset in a table called the interrupt vector. This vector contains
the memory addresses of specialized interrupt handlers. The purpose of a
vectored interrupt mechanism is to reduce the need for a single interrupt
handler to search all possible sources of interrupts to determine which one
needs service. In practice, however, computers have more devices {and, hence,
interrupt handlers) than they have address elements in the interrupt vector.
A common way to solve this problem is to use the technique of interrupt
chaining, in which each element in the interrupt vector points to the head of
a list of interrupt handlers. When an interrupt is raised, the handlers on the
corresponding list are called one by one, until one is found that can service
the request. This structure is a compromise between the overhead of a huge
interrupt table and the inefficiency of dispatching to a single interrupt handler.

Figure 13.4illustrates the design of the interrupt vector for the Intel Pentium
processor. The events from 0 to 31, which are nonmaskable, are used to signal
various error conditions. The events from 32 to 255, which are maskable, are
used for purposes such as device-generated interrupts.

The interrupt mechanism also implements a system of interrupt priority
levels. This mechanism enables the CPU to defer the handling of low-priority

. i X
0 divide error
1 debug exception
2 null interrupt
3 breakpoint
4 INTO-detected overflow
5 bound range exception
5} invalid opcode
7 device not available
8 double fauit
9 coprocessor segment overrun (reserved)
10 invalid task state sagment
11 segment not present
12 stack fault
13 general protection
14 page fault
15 {Intel reserved, do not use)
16 floating-point error
17 alignment check
18 machine check
19-31 (Intgl reserved, do not use}
32-255 maskable interrupts

Figure 13.4 Intel Pentium processor event-vector table.
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intexrupts without masking off all interrupts and makes it possible for a
high-priority interrupt to preempt the execution of a low-priority interrupt.

A modern operating system interacts with the interrupt mechanism in
several ways. At boot time, the operating system probes the hardware buses
to determine what devices are present and installs the corresponding interrupt
handlers into the interrupt vector. During 1/0, the various device controllers
raise interrupts when they are ready for service. These interrupts signify that
output has completed, or that input data are available, or that a failure has
been detected. The interrupt mechanism is also used to handle a wide variety
of exceptions, such as dividing by zero, accessing a protected or nonexistent
memory address, or attempting to execute a privileged instruction from user
mode. The events that trigger interrupts have a common property: They are
occurrences that induce the CPU to execute an urgent, self-contained routine.

An operating system has other good uses for an efficient hardware and
software mechanism that saves a small amount of processor state and then
calls a privileged routine in the kernel. For example, many operating systems
use the interrupt mechanism for virtual memory paging. A page fault is an
exception that raises an interrupt. The interrupt suspends the current process
and jumps to the page-fault handler in the kernel. This handler saves the state
of the process, moves the process to the wait queue, performs page-cache
management, schedules an 1/0 operation to fetch the page, schedules another
process to resume execution, and then returns from the interrupt.

Another example is found in the implementation of system calls. Usually
a program uses library calls to issue system calls. The library routines check
the arguments given by the application, build a data structure to convey the
arguments to the kernel, and then execute a special instruction called a software
interrupt (or a trap). This instruction has an operand that identifies the desired
kernel service. When a process executes the trap instruction, the interrupt
hardware saves the state of the user code, switches to supervisor mode, and
dispatches to the kernel routine that implements the requested service. The
trap is given a relatively low interrupt priority compared with those assigned
to device interrupts —executing a system call on behalf of an application is less
urgent than servicing a device controller before its FIFO queue overflows and
loses data.

Interrupts can also be used to manage the flow of control within the kernel.
For example, consider the processing required to complete a disk read. One
step is to copy data from kernel space to the user buffer. This copying is time
consuming but not urgent—it should not block other high-priority interrupt
handling. Another step is to start the next pending L/O for that disk drive. This
step has higher priority: If the disks are to be used efficiently, we need to start
the next 1/0 as soon as the previous one completes. Consequently, a pair of
interrupt handlers implements the kernel code that completes a disk read. The
high-priority handler records the 1/0 status, clears the device interrupt, starts
the next pending 1/0, and raises a low-priority interrupt to complete the work.
Later, when the CPU is not occupied with high-priority work, the low-priority
interrupt will be dispatched. The corresponding handler completes the user-
level 1/0 by copying data from kernel buffers to the application space and then
calling the scheduler to place the application on the ready queue.

A threaded kernel architecture is well suited to implement multiple
interrupt priorities and to enforce the precedence of interrupt handling over
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background processing in kernel and application routines. We illustrate this
point with the Solaris kernel. In Solaris, interrupt handlers are executed
as kernel threads. A range of high priorities is reserved for these threads.
These priorities give interrupt handlers precedence over application code and
kernel housekeeping and implement the priority relationships among interrupt
handlers. The priorities cause the Solaris thread scheduler to preempt low-
priority interrupt handlers in favor of higher-priority ones, and the threaded
implementation enables multiprocessor hardware to run several interrupt
handlers concurrently. We describe the interrupt architecture of UNIX and
Windows XP in Appendices A and 22, respectively.

In summary, interrupts are used throughout modern operating systems to
handle asynchronous events and to trap to supervisor-mode routines in the
kernel. To enable the most urgent work to be done first, modern computers
use a system of interrupt priorities. Device controllers, hardware faults, and
system calls all raise interrupts to trigger kernel routines. Because interrupts
are used so heavily for time-sensitive processing, efficient interrupt handling
is required for good system performance.

13.2.3 Direct Memory Access

For a device that does large transfers, such as a disk drive, it seems wasteful
to use an expensive general-purpose processor to watch status bits and to
feed data into a controller register one byte at a time—a process termed
programmed I/O (PIO). Many computers avoid burdening the main CPU with
PIO by offloading some of this work to a special-purpose processor called a
direct-memory-access (DMA) controller. To initiate a DMA transfer, the host
writes a DMA command block into memory. This block contains a pointer to
the source of a transfer, a pointer to the destination of the transfer, and a count
of the number of bytes to be transferred. The CPU writes the address of this
command block to the DMA controller, then goes on with other work. The DMA
controller proceeds to operate the memory bus directly, placing addresses on
the bus to perform transfers without the help of the main CPU.-A simple DMA
controller is a standard component in PCs, and bus-mastering I/0 boards for
the PC usually contain their own high-speed DMA hardware.

Handshaking between the DMA controller and the device controller is
performed via a pair of wires called DMA-request and DMA-acknowledge.
The device controller places a signal on the DMA-~request wire when a word of
data is available for transfer. This signal causes the DMA controller to seize the
memory bus, to place the desired address on the memory-address wires, and
to place a sighal on the DMA-acknowledge wire. When the device controller
receives the DMA-acknowledge signal, it transfers the word of data to memory
and removes the DMA-request signal.

When the entire transfer is finished, the DMA controller interrupts the CPU.
This process is depicted in Figure 13.5. When the DMA controller seizes the
memory bus, the CPU is momentarily prevented from accessing main memory,
although it can still access data items in its primary and secondary caches.
Although this cycle stealing can slow down the CP'U computation, offloading
the data-transfer work to a DMA controller generally improves the total system
performance. Some computer architectures use physical memory addresses for
DMA, but others perform direct virtual memory access {DVMA), using virtual
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Figure 13.5 Steps in a DMA transfer.

addresses that undergo translation to physical addresses. DVMA can perform
a transfer between two memory-mapped devices without the intervention of
the CPU or the use of main memory.

On protected-mode kernels, the operating system generally prevents
processes from issuing device commands directly. This discipline protects data
from access-control violations and also protects the system from erroneous use
of device controllers that could cause a system crash. Instead, the operating
system exports functions that a sufficiently privileged process can use to
access low-level operations on the underlying hardware. On kernels without
memory protection, processes can access device controllers directly. This direct
access can be used to obtain high performance, since it can avoid kernel
communication, context switches, and layers of kernel software. Unfortunately,
it interferes with system security and stability. The trend in general-purpose
operating systems is to protect memory and devices so that the system can try
to guard against erroneous or malicious applications.

13.2.4

Although the hardware aspects of 1/0 are complex when considered at the
level of detail of electronics-hardware design, the concepts that we have
just described are sufficient to enable us to understand many 1/0 features
of operating systems. Let’s review the main concepts:

IO Hardware Summary

Abus
A controller
+ An /0 port and its registers
The handshaking relationship between the host and a device contfoller
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The execution of this handshaking in a polling loop or via interrupts

= The offloading of this work to a DMA controller for large transfers

We gave a basic example of the handshaking that takes place between a
device controller and the host earlier in this section. In reality, the wide variety
of available devices poses a problem for operating-system implementers. Each
kind of device has its own set of capabilities, control-bit definitions, and
protocols for interacting with the host—and they are all different. How can
the operating system be designed so that we can attach new devices to the
computer without rewriting the operating system? And when the devices
vary so widely, how can the operating system give a convenient, uniform 1/0
interface to applications? We address those questions next.

e SIED LRI RN TR a1

In this section, we discuss structuring techniques and interfaces for the
operating system that enable 1/0 devices to be treated in a standard, uniform
way. We explain, for instance, how an application can open a file on a disk
without knowing what kind of disk it is and how new disks and other devices
can be added to a computer without disruption of the operating system.

Like other complex software-engineering problems, the approach here
involves abstraction, encapsulation, and software layering. Specifically, we
can abstract away the detailed differences in 1/0 devices by identifying a few

kernel
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o
2 kernel VO subsysten
3
Scsl keyboard | mouse PCl bus floppy ATAPI
device device device see device device device
driver driver driver driver driver driver
g
&
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©
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Figure 13.8 A kernel I/O structure.
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general kinds. Each general kind is accessed through a standardized set of
functions—an interface. The differences are encapsulated in kernel modules
called device drivers that internally are custom-tailored to each device but that
export one of the standard interfaces. Figure 13.6 illustrates how the I/0-related
portions of the kernel are structured in software layers.

The purpose of the device-driver layer is to hide the differences among
device controllers from the 1/0 subsystem of the kernel, much as the I/0
system calls encapsulate the behavior of devices in a few generic classes
that hide hardware differences from applications. Making the /0 subsystem
independent of the hardware simplifies the job of the operating-system
developer. It also benefits the hardware manufacturers. They either design
new devices to be compatible with an existing host controlier interface (such as
SCS1-2), or they write device drivers to interface the new hardware to popular
operating systems. Thus, we can attach new peripherals to a computer without
waiting for the operating-system vendor to develop support code.

Unfortunately for device-hardware manufacturers, each type of operating
system has its own standards for the device-driver interface. A given device
may ship with multiple device drivers—for instance, drivers for MS-DOS,
Windows 95/98, Windows NT/2000, and Solaris. Devices vary on many
dimensions, as illustrated in Figure 13.7.

# Character-stream or block. A character-stream device transfers bytes one
by one, whereas a block device transfers a block of bytes as a unit.

Sequential or random-access. A sequential device transfers data in a fixed
order determined by the device, whereas the user of a random-access
device can instruct the device to seek to any of the available data storage
locations.

character terminal
data-transfer mode block disk

sequential modem
access method randorm CD-ROM

synchronous tape
transfer schedule asynchronous keyboard

. dedicated ' tape

sharing sharable keyboard
device speed latency

seek time

transier rate

delay between operations

read only CD-ROM
I/O direction write only graphics controller

read-write - disk

Figure 13.7 Characteristics of I/O devices.
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* Synchronous or asynchronous. A synchronous device performs data
transfers with predictable response times. An asynchronous device
exhibits irregular or unpredictable response times.

» Sharable or dedicated. A sharable device can be used concurrently by
several processes or threads; a dedicated device cannot.

+ Speed of operation. Device speeds range from a few bytes per second to
a few gigabytes per second.

» Read-write, read only, or write only. Some devices perform both input
and output, but others support only one data direction.

For the purpose of application access, many of these differences are hidden
by the operating systemn, and the devices are grouped into a few conventional
types. The resulting styles of device access have, been found to be useful
and broadly applicable. Although the exact system calls may differ across
operating systems, the device categories are fairly standard. The major access
conventions include block 1/0, character-stream 1/0, memory-mapped file
access, and network sockets. Operating systems also provide special system
calls to access a few additional devices, such as a time-of-day clock and a timer.
Some operating systems provide a set of system calls for graphical display,
video, and audio devices.

Most operating systems also have an escape (or back door) that transpar-
ently passes arbitrary commands from an application to a device driver. In
UNIX, this system call is i0¢t1 () (for *1/0” control). The iocctl () system call
enables an application to access any functionality that can be implemented by
any device driver, without the need to invent a new system call. The ioct1()
system call has three arguments. The first is a file descriptor that connects the
application to the driver by referring to a hardware device managed by that
driver. The second is an integer that selects one of the commands implemented
in the driver. The third is a pointer to an arbitrary data structure in memory
that enables the application and driver to commuricate any necessary control
information or data.

13.3.1 Block and Character Devices

The block-device interface captures all the aspects necessary for accessing disk
drives and other block-oriented devices. The device is expected to understand
commandssuchasread () and write();ifitisarandom-access device, itisalso
expected to have a seek() command to specify which block to transfer next.
Applications normally access such a device through a file-system interface.
We can see that read (), write(), and seek ()} capture the essential behaviors
of block-storage devices, so that applications are insulated from the low-level
differences among those devices.

The operating system itself, as well as special applications such as database-
management systems, may prefer to access a block device as a simple linear
array of blocks. This mode of access is sometimes called raw VO. If the
application performs its own buffering, then using a file system would cause
extra, unneeded buffering. Likewise, if an application provides its own locking
of file blocks or regions, then any operating-system locking services would be
redundant at the least and contradictory at the worst. To avoid these contflicts,
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raw-device access passes control of the device directly to the application, letting
the operating system step out of the way. Unfortunately, no operating-system
setvices are then performed on this device. A compromise that is becoming
common is for the operating system to allow a mode of operation on a file that
disables buffering and locking. In the UNIX world, this is called direct I/O.

Memory-mapped file access can be layered on top of block-device drivers.
Rather than offering read and write operations, a memory-mapped interface
provides access to disk storage via an array of bytes in main memory. The
systemn call that maps a file into memory returns the virtual memory address
that contains a copy of the file. The actual data transfers are performed only
when needed to satisfy access to the memory image. Because the transfers
are handled by the same mechanism as that used for demand-paged virtual
memory access, memory-mapped 1/0 is efficient. Memory mapping is also
convenient for programmers—access to a memory-mapped file is as simple
as reading from and writing to memory. Operating systems that offer virtual
memory commonly use the mapping interface for kernel services, For instance,
to execute a program, the operating system maps the executable into memory
and then transfers control to the entry address of the executable. The mapping
interface is also commonly used for kernel access to swap space on disk.

A keyboard is an example of a device that is accessed through a character-
stream interface. The basic system calls in this interface enable an application
to get () or put() one character. On top of this interface, libraries can be
built that offer line-at-a-time access, with buffering and editing services (for
example, when a user types a backspace, the preceding character is removed
from the input stream). This style of access is convenient for input devices such
as keyboards, mice, and modems that produce data for input “spontaneously”
—that is, at times that cannot necessarily be predicted by the application. This
access style is also good for output devices such as printers and audio boards,
which naturaily fit the concept of a linear stream of bytes.

13.3.2 Network Devices

Because the performance and addressing characteristics of network 1/0 differ
significantly from those of disk 1/0, most operating systems provide a network
1/Ointerface that is different from the read () -write () —-seek () interface used
for disks. One interface available in many operating systems, including UNIX
and Windows NT, is the network socket interface.

Think of a wall socket for electricity: Any electrical appliance can be
plugged in. By analogy, the system calls in the socket interface enable an
application to create a socket, to connect a local socket to a remote address
(which plugs this application into a socket created by another application), to
listen for any remote application to plug into the local socket, and to send and
receive packets over the connection. To support the implementation of servers,
the socket interface also provides a function called select () that manages a
set of sockets. A call to select {) returns information about which sockets have
a packet waiting to be received and which sockets have room to accept a packet
to be sent. The use of select{) eliminates the polling and busy waiting that
would otherwise be necessary for network 1/0. These functions encapsulate the
essential behaviors of networks, greatly facilitating the creation of distributed
applications that can use any underlying network hardware and protocol stack.
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Many other approaches to interprocess communication and network
communication have been implemented. For instance, Windows NT provides
one interface to the network interface card and a second interface to the
network protocols (Section C.6). In UNIX, which has a long history as a
proving ground for network technology, we find half-duplex pipes, full-duplex
FIFOs, full-duplex STREAMS, message queues, and sockets. Information on UNIX
networking is given in Appendix A (Section A.9).

13.3.3 Clocks and Timers

Most computers have hardware clocks and timers that provide three basic
functions:

Give the current time.
= Give the elapsed time.

< Set a timer to trigger operation X at time T.

These functions are used heavily by the operating system, as well as by time-
sensitive applications. Unfortunately, the system calls that implement these
functions are not standardized across operating systems.

The hardware to measure elapsed time and to trigger operations is called
a programmable interval timer. It can be set to wait a certain amount of time
and then generate an interrupt, and it can be set to do this once or to repeat the
process to generate periodic interrupts. The scheduler uses this mechanism to
generate an interrupt that will preempt a process at the end of its time slice. The
disk 170 subsystem uses it to invoke the flushing of dirty cache buffers to disk
periodically, and the network subsystem uses it to cancel operations that are,
proceeding too slowly because of network congestion or failures. The operating
system may also provide an interface for user processes to use timers. The
operating system can support more timer requests than the number of timer
hardware channels by simulating virtual clocks. To do so, the kernel (or the
timer device driver) maintains a list of interrupts wanted by its own routines
and by user requests, sorted in earliest-time-first order. It sets the timer for the
earliest time. When the timer interrupts, the kernel signals the requester and
reloads the timer with the next earliest time.

On many computers, the interrupt rate generated by the hardware clock is
between 18 and 60 ticks per second. This resolution is coarse, since a modern
computer can execute hundreds of millions of instructions per second. The
precision of triggers is limited by the coarse resolution of the timer, together
with the overhead of maintaining virtual clocks. Furthermore, if the timer
ticks are used to maintain the system time-of-day clock, the system clock
can drift. In most computers, the hardware clock is constructed from a high-
frequency counter. In some computers, the value of this counter can be read
from a device register, in which case the counter can be considered a high-
resolution clock. Although this clock does not generate interrupts, it offers
accurate measurements of time intervals.

13.3.4 Blocking and Nonblocking 10

Another aspect of the system-call interface relates to the choice between
blocking 1/0 and nonblocking 1/0. When an application issues a blocking
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system call, the execution of the application is suspended. The application
is moved from the operating system’s run queue to a wait queue. After the
system call completes, the application is moved back to the run queue, where
it is eligible to resume execution, at which time it will receive the values
returned by the system call. The physical actions performed by 1/0 devices
are generally asynchronous—they take a varying or unpredictable amount of
time. Nevertheless, most operating systems use blocking system calls for the
application interface, because blocking application code is easier to understand
than nonblocking application code.

Some user-level processes need nonblocking /0. One example is a user
interface that receives keyboard and mouse input while processing and
displaying data on the screen. Another example is a video application that
reads frames from a file on disk while simultaneously decompressing and
displaying the output on the display.

Ore way an application writer can overlap execution with 1/0 is to write
a multithreaded application. Some threads can perform blocking system calls,
while others continue executing. The Solaris developers used this technique to
implement a user-level library for asynchronous 1/0, freeing the application
writer from that task. Some operating systems provide nonblocking 1/0 system
calls. A nonblocking call does not halt the execution of the application for an
extended time. Instead, it returns quickly, with a return value that indicates
how many bytes were transferred.

An alternative to a nonblocking system call is an asynchronous system
call. An asynchronous call returns immediately, without waiting for the 1/0 to
complete. The application continues to execute its code. The completion of the
1/0 at some future time is communicated to the application, either through the
setting of some variable in the address space of the application or through the
triggering of a signal or software interrupt or a call-back routine that is executed
outside the linear corltrol flow of the application. The difference between
nonblocking and asynchronous system calls is that a nonblocking read ()~
returns immediately with whatever data are available—the fuil number of
bytes requested, fewer, or none at all. An asynchronous read() call requests
a transfer that will be performed in its entirety but that will complete at some
future time. These two I/O methods are shown in Figure 13.8.

A good example of nonblocking behavior is the select () system call for
network sockets. This system call takes an argument that specifies a maximum
waiting time. By setting it to 0, an application can poll for network activity
without blocking. But using select() introduces extra overhead, because
the select() call only checks whether 1/0 is possible. For a data transfer,
select () must be followed by some kind of read() or write() command.
A variation on this approach, found in Mach, is a blocking multiple-read call.
[t specifies desired reads for several devices in one system call and returns as
soon as any one of them completes.

e

Kernels provide many services related to 1/0. Several services—scheduling,
buffering, caching, spooling, device reservation, and error handling—are
provided by the kernel’s [/0 subsystem and build on the hardware and device-
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Figure 13.8 Two /O methods: {(a) synchronous and (b} asynchronous.

driver infrastructure. The [/0 subsystem is also responsible for protecting itself
from errant processes and malicious users.

13.4.1 /O Scheduling

To schedule a set of 1/0 requests means to determine a good order in which to
execute them. The order in which applications issue system calls rarely is the
best choice. Scheduling can improve overall system performance, can share
device access fairly among processes, and can reduce the average waiting time
for 1/0 to complete. Here is a simple example to illustrate the opportunity.
Suppose that a disk arm is near the beginning of a disk and that three
applications issue blocking read calls to that disk. Application 1 requests a
block near the end of the disk, application 2 requests one near the beginning,

"and application 3 requests one in the middle of the disk. The operating system
can reduce the distance that the disk arm travels by serving the applications in
the order 2, 3, 1. Rearranging the order of service in this way is the essence of
1/0 scheduling.

Operating-system developers implement scheduling by maintaining a wait
queue of requests for each device. When an application issues a blocking 1/0
system call, the request is placed on the queue for that device. The I/Oscheduler
rearranges the order of the queue to improve the overall system efficiency
and the average response time experienced by applications. The operating
system may also try to be fair, so that no one application receives especially
poor service, or it may give priority service for delay-sensitive requests. For
instance, requests from the virtual memory subsystem may take priority over
application requests. Several scheduling algorithms for disk 1/0 are detailed
in Section 12.4,

When a kernel supports asynchronous 1/0, it must be able to keep track
of many [/0 requests at the same time. For this purpose, the operating system
might attach the wait queue to a device-status table. The kernel manages this
table, which contains an entry for each /0 device, as shown in Figure 139,
Each table entry indicates the device’s type, address, and state (not functioning,
idle, or busy). If the device is busy with a request, the type of request and other
parameters will be stored in the table entry for that device.
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device: keyboard
status: idle
device: laser printer | if:::rezirf'-c:; =
status: bus " I J
ed address: 38546
device: mouse length: 1372
status: idle
device; disk unit 1
status: idle
device: disk unit 2 L T 1L
. . request for request for —
staus:busy disk unit 2 disk unit 2
file: 300 : file: yyy
operation: read operation: write
‘address: 43048 -addréss: 03458
tength: 20000 - length: 500

Figure 13.9 Device-status table.

One way in which the 1/0 subsystem improves the efficiency of the
computer is by scheduling 1/0 operations. Another way is by using storage
space in main memory or on disk via techniques called buffering, caching, and
spooling.

13.4.2 Buffering

A buffer is a memory area that stores data while they are transferred between
two devices or between a device and an application. Buffering is done for three
reasons. One reason is to cope with a speed mismatch between the producer and
consumer of a data stream. Suppose, for example, that a file is being received
via modem for storage on the hard disk. The modem is about a thousand
times slower than the hard disk. So a buffer is created in main memory to
accumulate the bytes received from the modem. When an entire buffer of data
has arrived, the buffer can be written to disk in a single operation. Since the
disk write is not instantaneous and the modem still needs a place to store
additional incoming data, two buffers are used. After the modem fills the first
buffer, the disk write is requested. The modem then starts to fill the second
buffer while the first buffer is written to disk. By the time the modem has filled
the second buffer, the disk write from the first one should have completed,
so the modem can switch back to the first buffer while the disk writes the
second one. This double buffering decouples the producer of data from the
consumer, thus relaxing timing requirements between them. The need for this
decoupling is illustrated in Figure 13.10, which lists the enormous differences
in device speeds for typical computer hardware.

A second use of buffering is to adapt between devices that have different
data-transfer sizes. Such disparities are especially common in computer
networking, where buffers are used widely for fragmentation and reassembly
of messages. At the sending side, a large message is fragmented into small
network packets. The packets are sent over the network, and the receiving side
places them in a reassembly buffer to form an image of the source data.
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Figure 13.10 Sun Enterprise 6000 device-transfer rates (logarithmic).

A third use of buffering is to support copy semantics for application 1/0.
An example will clarify the meaning of “copy semantics.” Suppose that an
application has a buffer of data that it wishes to write to disk. It calls the -
urite() system call, providing a pointer to the buffer and an integer specifying
the number of bytes to write. After the system call returns, what happens if
the application changes the contents of the buffer? With copy semantics, the
version of the data written to disk is guaranteed to be the version at the
time of the application system call, independent of any subsequent changes
in the application’s buffer. A simple way in which the operating system can
guarantee copy semantics is for the write () system call to copy the application
data into a kernel buffer before returning control to the application. The disk
write is performed from the kernel buffer, so that subsequent changes to the
application buffer have no effect. Copying of data between kernel buffers and
application data space is common in operating systems, despite the overhead
that this operation introduces, because of the clean semantics. The same effect
can be obtained more efficiently by clever use of virtual memory mapping and
copy-on-write page protection.

13.4.3 Caching

A cache is aregion of fast memory thatholds copies of data. Access to the cached
copy is more efficient than access to the original. For instance, the instructions
of the currently running process are stored on disk, cached in physical memory,
and copied again in the CPU’s secondary and primary caches. The difference
between a buffer and a cache is that a buffer may hold the only existing copy of
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a data item, whereas a cache, by definition, just holds a copy on faster storage
of an item that resides elsewhere.

Caching and buffering are distinct functions, but sometimes a region
of memory can be used for both purposes. For instance, to preserve copy
semantics and to enable efficient scheduling of disk /0, the operating system
uses buffers in main memory to hold disk data. These buffers are also used as
a cache, to improve the 1/0 efficiency for files that are shared by applications
or that are being written and reread rapidly. When the kernel receives a file
1/0 request, the kernel first accesses the buffer cache to see whether that region
of the file is already available in main memory. If so, a physical disk [/O
can be avoided or deferred. Also, disk writes are accumulated in the buffer
cache for several seconds, so that large transfers are gathered to allow efficient
write schedules. This strategy of delaying writes to improve 1/0 efficiency is
discussed, in the context of remote file access, in Section 15.3.

13.4.4 Spooling and Device Reservation

A spool is a buffer that holds output for a device, such as a pritter, that cannot
accept interleaved data streams. Although a printer can serve only one job
at a time, several applications may wish to print their output concurrently,
without having their output mixed together. The operating system solves this
problem by intercepting all output to the printer. Each application’s output
is spooled to a separate disk file. When an application finishes printing, the
spooling system queues the corresponding spool file for output to the printer.
The spooling system copies the queued spool files to the printer one at a time. In
some operating systems, spooling is managed by a system daemon process. In
others, itis handled by an in-kernel thread. In either case, the operating system
provides a control interface that enables users and system administrators to
display the queue, to remove unwanted jobs before those jobs print, to suspend
printing while the printer is serviced, and so on.

Some devices, such as tape drives and printers, cannot usefully multiplex
the 1/0 requests of multiple concurrent applications. Spooling is one way
operating systemns can coordinate concurrent output. Another way to deal with
concurrent device access is to provide explicit facilities for coordination. Some
operating systems {including VMS) provide support for exclusive device access
by enabling a process to allocate an idle device and to deallocate that device
when it is no longer needed. Other operating systems enforce a limit of one
open file handle to such a device. Many operating systems provide functions
that enable processes to coordinate exclusive access among themselves. For
instance, Windows NT provides system calls to wait until a device object
becomes available. It also has a parameter to the open() system call that
declares the types of access to be permitted to other concurrent threads. On
these systems, it is up to the applications to avoid deadlock.

13.4.5 Error Handling

An operating system that uses protected memory can guard against many
kinds of hardware and application errors, so that a complete system failure is
not the usual result of each minor mechanical glitch. Devices and 1/0 transfers
can fail in many ways, either for transient reasons, as when a network becomes
overloaded, or for “permanent” reasons, as when a disk controller becomes
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defective. Operating systems can often compensate effectively for transient
failures. For instance, a disk read() failure results in a read() retry, and
a network send() error results in a resend(), if the protocol so specifies.
Unfortunately, if an important component expertences a permanent failure,
the operating system is unlikely to recover.

As a general rule, an /0 system call will return one bit of information
about the status of the call, signifying either success or failure. In the UNIX
operating system, an additional integer variable named errno is used to
return an error code-—one of about a hundred values—indicating the general
nature of the failure (for example, argument out of range, bad pointer, or
file not open). By contrast, some hardware can provide highly detailed error
inforination, although many current operating systems are not designed to
convey this information to the application. For instance, a failure of a SCSI
device is reported by the SCSI protocol in three levels of detail: a sense key that
identifies the general nature of the failure, such as a hardware error or an illegal
request; an additional sense code that states the category of failure, such as a
bad command parameter or a self-test failure; and an additional sense-code
qualifier that gives even more detail, such as which command parameter was
in error or which hardware subsystem failed its self-test. Further, many $cs
devices maintain internal pages of error-log information that can be requested
by the host—but that seldom are.

13.4.6 /O Protection

Errors are closely related to the issue of protection. A user process may
accidentally or purposefully attempt to disrupt the normal operation of a
system by attempting to issue illegal 1/0 instructions. We can use various
mechanisms to ensure that such disruptions cannot take place in the system.

To prevent users from performing illegal 1/0, we define all I/0 instructions
to be privileged instructions. Thus, users cannot issue 1/0 instructions directly;
they must do it through the operating system. To do 1/0, a user program
executes a system call to request that the operating system perform 170 on its
behalf (Figure 13.11). The operating system, executing in monitor mode, checks
that the request is valid and, if it is, does the 1/0 requested. The operating
system then returns to the user.

In addition, any memory-mapped and 1/0 port memory locations must
be protected from user access by the memory protection system. Note that a
kernel cannot simply deny all user access. Most graphics games and video
editing and playback softwarc need direct access to memory-mapped graphics
controller memory to speed the performance of the graphics, for example. The
kernel might in this case provide a locking mechanism to allow a section of
graphics memory (representing a window on screen) to be allécated to one
process at a time.

13.4.7 Kernel Data Structures

The kernel needs to keep state information about the use of 170 components.
It does so through a variety of in-kernel data structures, such as the open-file
table structure from Section 11.1. The kernel uses many similar structures to
track network connections, character-device communications, and other /0
activities.
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Figure 13.11 Use of a system call to perform /0.

UNIX provides file-system access to a variety of entities, such as user files,
raw devices, and the address spaces of processes. Although each of these
entities supports a read() operation, the semantics differ. For instance, to
read a user file, the kernel needs to probe the buffer cache before deciding
whether to perform a disk 1/0. To read a raw disk, the kernel needs to ensure
that the request size is a multiple of the disk sector size and is aligned on a
sector boundary. To read a process image, it is merely necessary to copy data
from memory. UNIX encapsulates these differences within a uniform structure
by using an object-oriented technique. The open-file record, shown in Figure
13.12, contains a dispatch table that holds pointers to the appropriate routines,
depending on the type of file.

Some operating systems use object-oriented methods even more exten-
sively. For instance, Windows NT uses a message-passing implementation for
I/0. An1/0 request is converted into a message that is sent through the kernel
to the 1/0 manager and then to the device driver, each of which may change the
message contents. For output, the message contains the data to be written. For
input, the message contains a buffer to receive the data. The message-passing
approach can add overhead, by comparison with procedural techniques that
use shared data structures, but it simplifies the structure and design of the 1/0
system and adds flexibility.

13.4.8 Kernel!l /0 Subsystem Summary

In summary, the 1/0 subsystem coordinates an extensive collection of services
that are available to applications and to other parts of the kernel. The 1/0
subsystem supervises these procedures:



13.5

13.5 499

system-wide open-file t1able

' active-inode
file-system record table

incde pointer o
pointer to read and write functions
pointer to select function

i . pa{'?ﬁ[lzq!':?e [ sointer to ioctl function
file descriptor— o 1| | pointer to close function

4 .

. network-

4 networki cket) record information
etworking (so ) r table

user-process memary

pointer to network info -
pointer ta read and write functions
pointer to select function

pointer to ioct! function

pointer ta close function

kernei memory
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Management of the name space for files and devices
= Access.control to files and devices
Operation control (for example, a modem cannot seek())
File-system space allocation
Device allocation
Buffering, caching, and spooling
1/0 scheduling
Device-status monitoring, error handling, and failure recovery
Device-driver configuration and initialization

The upper levels of the 1/0 subsystem access devices via the uniform
interface provided by the device drivers.

Earlier, we described the handshaking between a device driver and a device
controller, but we did not explain how the operating system connects an
application request to a set of network wires or to . specific disk sector. Let’s
consider the example of reading a file from disk. The application refers to the
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data by a file name. Within a disk, the file system maps from the file name
through the file-system directories to obtain the space allocation of the file. For
instance, in M3-DOS, the name maps to a number that indicates an entry in the
file-access table, and that table entry tells which disk blocks are allocated to the
file. In UNIX, the name maps to an inode number, and the corresponding inode
contains the space-allocation information.

How is the connection made from the file name to the disk controller (the
hardware port address or the memory-mapped controller registers)? First, we
consider MS5-DOS, a relatively simple operating system. The first part of an
MS-DOS file name, preceding the colon, is a string that identifies a specific
hardware device. For exampic, o is the first part of every file name on the
primary hard disk. The fact that c: represents the primary hard disk is built
into the operating system; c: is mapped to a specific port address through a
device table. Because of the colon separator, the device name space is separate
from the file-system name space within each device. This separation makes it
easy for the operating system to associate extra functionality with each device.
For instance, it is easy to invoke spooling on any files written to the printer.

If, instead, the device name space is incorporated in the regular file-system
name space, as it is in UNIX, the normal file-system name services are provided
automatically. If the file system provides ownership and access control to all
file names, then devices have owners and access control. Since files are stored
on devices, such an interface provides access to the 170 system at two levels.
Names can be used to access the devices themselves or to access the files stored
on the devices.

INTX represents device names in the regular file-system name space. Unlike
an MS-DOS file name, which has a colon separator, a UNIX path name has no
clear separation of the device portion. In fact, no part of the path name is the
name of a device. LiNIX has a mount table that associates prefixes of path names
with specific device names. To resolve a path name, UNIX looks up the name in
the mount table to find the longest matching prefix; the correspending entry
in the mount table gives the device name. This device name also has the form
of a name in the file-system name space. When UNIX looks up this name in
the file-system directory structures, it finds not an inede number but a <mmjor,
minor> device number. The major device number identifies a device driver
that should be called to handle 1/0 to this device. The minor device number
is passed to the device driver to index into a device table. The corresponding
device-table entry gives the port address or the memory-mapped address of
the device controller.

Modern operating svstems obtain significant flexibility from the multiple
stages of lookup tables in the path between a request and a physical device
controiler. The mechanisms that pass requests between applications and
drivers are gencral. Thus, we can introduce new devices and drivers into a
computer without recompiling the kernel. In fact, some operating systems
have the ability to load device drivers on demand. At boot time, the system
first probes the hardware buses to determine what devices are present; it then
loads in the necessary drivers, either immediately or when first required by an
1/0 request.

Now we describe the typical life cycle of a blocking read request, as
depicted in Figure 13.13. The figure suggests that an 1/0 operation requires
a groat many steps that together consume a tremendous number of CPU cyceles.
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Figure 13.13 The life cycle of an /O request.

A process issues a blocking read () svstem call to a file descriptor of a file
that has been opened previously.

The system-call code in the kernel checks the parameters for correctness.
In the case of input, if the data are already available in the buffer cache,
the data are returned to the process, and the 1/0 request is completed

Otherwise, a physical 1/0 must be performed. The process is removed
from the run queue and is placed on the wait queue for the device, and
the 1/0 request is scheduled. Eventually, the 1/0 subsystem sends the
request to the device driver. Depending on the operating system, the
request is sent via a subroutine call or an in-kernel message.
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The device driver allocates kernel buffer space to receive the data and
schedules the 1/0. Eventually, the driver sends commands to the device
controller by writing into the device-control registers.

The device controller operates the device hardware to perform the data
transfer.

The driver may poll for status and data, or it may have set up a DMA
transfer into kernel memory. We assume that the transfer is managed
by a DMA controller, which .generates an interrupt when the transfer
completes.

The correct interrupt handler receives the interrupt via the interrupt-
vector table, stores any necessary data, signals the device driver, and
returns from the interrupt.

The device driver receives the signal, determines which 1/0 request has
completed, determines the request’s status, and signals the kernel 1/0
subsystem that the request has been completed.

The kernel transfers data or return codes to the address space of the
requesting process and moves the process from the wait queue back to
the ready queue.

Moving the process to the ready queue unblocks the process. When the
scheduler assigns the process to the CPU, the process resumes execution
at the completion of the system call.

UNIX System V has an interesting mechanism, called STREAMS, that enables
an application to assemble pipelines of driver code dynamically. A stream is
a full-duplex connection between a device driver and a user-level process. It
consists of a stream head that interfaces with the user process, a driver end
that controls the device, and zero or more stream modules between them. The
stream head, the driver end, and each module contain a pair of queues—a read
queue and a write queue. Message passing is used to transfer data between
queues, The STREAMS structure is shown in Figure 13.14.

Modules provide the functionality of STREAMS processing; they are pushed
onto a stream by use of the ioct1() system call. For example, a process can
open a serial-port device via a stream and can push on a module to handle
input editing. Because messages are exchanged between queues in adjacent
modules, a queue in one module may overflow an adjacent queue. To prevent
this from occurring, a queue may support flow control. Without flow control,
a queue accepts all messages and immediately sends them on to the queue
in the adjacent module without buffering them. A queue supporting flow
control buffers messages and does not accept messages without sufficient
buffer space; this process involves exchanges of control messages between
queues in adjacent modules.

A user process writes data to a device using either the write () or putmsg ()
system call. The write() system call writes raw data to the stream, whereas
putmsg () allows the user process to specify a message. Regardless of the
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Figure 13.14 The STREAMS structure.

system call used by the user process, the stream head copies the data into a
message and delivers it to the queue for the next module in line. This copying of
messages continues until the message is copied to the driver end and hence the
device. Similarly, the user process reads data from the stream head using either
the read() or getmsg () system call. If read () is used, the stream head gets
a message from its adjacent queue and returns ordinary data (an unstructured
byte stream) to the process. If getmsg () is used, a message is returned to the
process.

STREAMS 1/0 is asynchronous (or nonblocking) except when the user
process communicates with the stream head. When writing to the stream,
the user process will block, assuming the next gueue uses flow control, until
there is Toom to copy the message. Likewise, the user process will block when
reading from the stream until data are available.

The driver end is similar to a stream head or a module in that it has a read
and write queue. However, the driver end must respond to interrupts, such
as one triggered when a frame is ready to be read from a network. Unlike the
stream head, which may block if it is unable to copy a message to the next queue
in line, the driver end must handle all incoming data. Drivers must support
flow control as well. However, if a device’s buffer is full, the device typically
resorts to dropping incoming messages. Consider a network card whose input
buffer is full. The network card must simply drop further messages until there
is ampie buffer space to store incoming messages.

The benefit of using STREAMS is that it provides a framework for a
modular and incremental approach to writing device drivers and network
protocols. Modules may be used by different streams and hence by different
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devices. For example, a networking module may be used by both an Ethernet
network card and a token-ring network card. Furthermore, rather than treating
character-device [/0O as an unstructured byte stream, STREAMS allows support
for message boundaries and control information between modules. Support
for STREAMS is widespread among most UNIX variants, and it is the preferred
method for writing protocols and device drivers. For example, System V UNIX
and Solaris implerment the socket mechanism using STREAMS.

|70 is a major factor in system performance. It places heavy demands on the Cru
to execute device-driver code and to schedule processes fairly and efficiently
as they block and unblock. The resulting context switches stress the CPU and its
hardware caches. 1/0 also exposes any inefficiencies in the interrupt-handling
mechanisms in the kernel. In addition, i/0 loads down the memory bus during
data copy between controllers and physical memory and again during copies
between kernel buffers and application data space. Coping gracefully with all
these demands is one of the major concerns of a computer architect,

Although modern computers can handle many thousands of interrupts per
second, interrupt handling is a relatively expensive task: Each inter rupt causes
the system to perform a state change, to execute the interrupt handler, and then
to restore state. Programmed 1/0 can be more efficient than interrupt-driven
170, if the number of cycles spent in busy waiting is not excessive. An 1/0
completion typically unblocks a process, leading to the full overhead of a
context switch.

Network traffic can also cause a high context-switch rate. Consider, for
instance, a remote login from one machine to another. Each character typed
on the local machine must be transported to the remote machine. On the local
machine, the character is typed; a keyboard interrupt is generated; and the
character is passed through the interrupt handler to the device driver, to the
kernel, and then to the user process. The user process issues a network 1/0
system call to send the character to the remote machine. The character then
flows into the local kernel, through the network layers that construct a network
packet, and into the network device driver. The network device driver transfers
the packet to the network controller, which sends the character and generates
an ime.rupt. The interrupt is passed back up through the kernel to cause the
network 1/0 system call to complete.

Now, the remote system’s network hardware receives the packet, and an
interrupt is generated. The character is unpacked from the network protocols
and is given to the appropriate network daemon. The network daeman
identifies which remote login session is involved and passes the packet to
the appropriate subdaemon for that session. Throughout this flow, there are
context switches and state switches (Figure 13.15). Usually, the receiver echoes
the character back to the sender; that approach doubles the work.

To eliminate the context switches involved in moving each character
between daemons and the kernel, the Solaris developers reimplemented the
telnet daemon using in-kernel threads. Sun estimates that this improvement
increased the maximum number of network logins from a few hundred to a
few thousand on a large server.
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Other systems use separate front-end processors for terminal 1/0 to reduce
the interrupt burden on the main CPU. For instance, a terminal concentrator
can multiplex the traffic from hundreds of remote terminals into one port on a
large computer. An I/O channel is a dedicated, special-purpose Cr'v found in
mainframes and in other high-end systems. The job of a channel is to offload
1/0 work from the main CP’U. The idea is that the channels keep the data flowing
smoothly, while the main CPU remains free to process the data. Like the device
controllers and DMA controllers found in smaller computers, a channel can
process more general and sophisticated programs, so channels can be tuned
for particular workloads.

We can employ several principles to improve the efficiency of 1/0:

Reduce the number of context switches.

Reduce the number of times that data must be copied in memory while
passing between device and application.

Reduce the frequency of interrupts by using large transfers, smart con-
trollers, and polling (if busy waiting can be minimized).
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Increase concurrency by using DMA-knowledgeable controllers or chan-
nels to offload simple data copying from the CPU.

Move processing primitives into hardware, to allow their operation in
device controllers to be concurrent with CPU and bus operation.

Balance CPU, memory subsystemn, bus, and 1/0 performance, because an
overload in any one area will cause idleness in others.

Devices vary greatly in complexity. For instance, a mouse is simple. The
mouse movements and button clicks are converted into numeric values thatare
passed from hardware, through the mouse device driver, to the application. By
contrast, the functionality provided by the Windows NT disk device driver is
complex. It not only manages individual disks but also implements RAID arrays
(Section 12.7). To do so, it converts an application’s read or write request into a
coordinated set of disk I/0 operations. Moreover, it implements sophisticated
error-handling and data-recovery algorithms and takes many steps to optimize
disk performance.

Where should the 1/0 functionality be implemented —in the device hard-
ware, in the device driver, or in application software? Sometimes we observe
the progression depicted in Figure 13.16.

Initially, we implement experimental 1/0 algorithms at the application
level, because application code is flexible and application bugs are unlikely
to cause system crashes. Furthermore, by developing code at the applica-
tion level, we avoid the need to reboot or reload device drivers after every
change to the code. An application-level implementation can be inefficient,
however, because of the overhead of context switches and because the
application cannot take advantage of internal kernel data structures and

new algorithm

]

application code

)

kernel code

device-drivar code

device-contraller code (hardware})

increased efficiency
increased abstraction
increased flexibility

device code (hardware)

< increased development cost

< increased time (generations) ]

<

Figure 13.16 Device functionality progression.
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kernel functionality (such as efficient in-kernel messaging, threading, and
locking).

When an application-level algorithm has demonstrated its worth, we
may reimplement it in the kemel. This can improve the performance,
but the development effort is more challenging, because an operating-
system kernel is a large, complex software system. Moreover, an in-kernel
implementation must be thoroughly debugged to avoid data corruption
and system crashes.

The highest performance may be obtained by a specialized implementation
in hardware, either in the device or in the controller. The disadvantages of
a hardware implementation include the difficulty and expense of making
further improvements or of fixing bugs, the increased development time
(months rather than days), and the decreased flexibility. For instance, a
hardware RAID controller may not provide any means for the kernel to
influence the order or location of individual block reads and writes, even
if the kernel has special information about the workload that would enable
the kernel to improve the 1/0 performance.

The basic hardware elements involved in 1/0 are buses, device controllers, and
the devices themselves. The work of moving data between devices and main
memory is performed by the CPU as programmed 1/0 or is offloaded to a DMA
controller. The kernel module that controls a device is a device driver. The
system-call interface provided to applications is designed to handle several
basic categories of hardware, including block devices, character devices,
memory-mapped files, network sockets, and programmed interval timers. The
syslem calls usuaily block the process that issues them, but nonblocking and
asynchronous calls are used by the kernel itself and by applications that must
not sleep while waiting for an 1/0 operation to complete.

The kernel’s {/0 subsystem provides numerous services. Among these
are 1/0 scheduling, buffering, caching, spooling, device reservation, and error
handling. Another service, name translation, makes the connection between
hardware devices and the symbolic file names used by applications. It involves
several levels of mapping that translate from character-string names, to specific
device drivers and device addresses, and then te physical addresses of 1/Opaorts
or bus controllers. This mapping may occur within the file-system name space,
as it does in UNIX, or in a separate device name space, as it does in MS-DOS.

STREAMS is an implementation and methodology for making drivers
reusable and easy to use. Through them, drivers can be stacked, with data
passed through them sequentially and bidirectionally for processing.

1/0 system calls are costly in terms of CPU consumption, because of the
many layers of software between a physical device and the application. These
layers imply the overheads of context switching to cross the kernel’s protection
boundary, of signal and interrupt handling to service the I/0 devices, and of
the load on the CPU and memory system to copy data between kernel buffers
and application space.



508

Chapter 13

13.1

13.2

13.3

134

13.5

13.6

13.7

13.8

When multiple interrupts from different devices appear at about the
same time, a priority scheme could be used to determine the order in
which the interrupts would be serviced. Discuss what issues need to
be considered in assigning priorities to different interrupts.

What are the advantages and disadvantages of supporting memory-
mapped [/0 to device control registers?

In most multiprogrammed systems, user programs access memory
through virtual addresses, while the operating system uses raw phys-
ical addresses to access memory. What are the implications of this
design on the initiation of 1/0 operations by the user program and
their execution by the operating system?

What are the various kinds of performance overheads associated with
servicing an interrupt?

Typically, at the completion of a device 1/0, a single interrupt is raised
and appropriately handled by the host processor. In certain settings,
however, the code that is to be executed at the completion of the
[/O can be broken into two separate pieces, one of which executes
immediately after the 1/0 completes and schedules a second interrupt
for the remaining piece of code to be executed at a later time. What is
the purpose of using this strategy in the design of interrupt handlers?

Some DMA controllers support direct virtual memory access, where
the targets of 1/0 operations are specified as virtual addresses and
a translation from virtual to physical address is performed during
the DMA. How does this design complicate the design of the DMA
controller? What are the advantages of providing such a functionality?

Write (in pseudocode) an implementation of virtual clocks, including
the queueing and management of timer requests for the kernel and
applications. Assume that the hardware provides three timer channels.

Discuss the advantages and disadvahtages of guaranteeing reliable
transfer of data between modules in the STREAMS abstraction.

Vahalia [1996] provides a good overview of I/O and networking in UNIX.
Leffler et al. {1989] detail the 1/O structures and methods employed in
BSD UNIX. Milenkovic [1987] discusses the complexity of 1/0 methods and
implementation. The use and programming of the various interprocess-
communication and network protocols in UNIX are explored in Stevens
[1992]. Brain [1996] documents-the Windows NT application interface. The
1/0 implementation in the sample MINIX operating system is described in
Tanenbaum and Woodhull [1997]. Custer {1994] includes detailed information
on the NT message-passing implementation of 1/0.
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For details of hardware-level 1/0handling and memory-mapping function-
ality, processor reference manuals (Motorola [1993] and Intel [1993]) are among
the best sources. Hennessy and Patterson [2002] describe multiprocessor sys-
tems and cache-consistency issues. Tanenbaum [1990] describes hardware 1/O
design at a low level, and Sargent and Shoemaker [1995] provide a program-
mer’s guide to low-level PC hardware and software. The [BM PC device I/O
address map is given in IBM [1983}. The March 1994 issue of IEEE Computer is
~ devoted to advanced 1/O hardware and software. Rago [1993] provides a good

discussion of STREAMS.






Part Six

A distributed system is a collection of processors that do not share mem-
ory or a clock. Instead, each processor has its cwn iocal memory, and the
processors communicate with one another through communication lines
such as local-area or wide-area networks, The processors in a distributed
system vary in size and function. Such systems may include smalt hand-
held or real-time devices, personal computers, workstations, and large
mainframe computer systems.

A distributed file system is a file-service system whose users, servers,
and storage devices are dispersed among the sites of a distributed
system. Accordingly. service activity has to be carried out across the
network; instead of a single centralized data repository, there are multipie
independent storage devices.

The benefits of a distributed systerm include giving users access to
the resources maintained by the system and thereby speeding up com-
putation and improving data availability and reliability. Because a system is
distributed, however, it must provide mechanisms for process synchro-
nization and communication, for dealing with the deadlock problem, and
for handling failures that are not encountered in a centralized system.
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A distributed system is a collection of processors that do not share memory
or a clock. Instead, each processor has its own local memory. The processors
communicate with one another through various comimunication networks,
such as high-speed buses or telephone lines. In this chapter, we discuss the
general structure of distributed systems and the networks that interconnect
thera. We contrast the main differences in operating-system design between
these systems and centralized systems. In Chapter 15, we go on to discuss
distributed file systems. Then, in Chapter 16, we describe the methods
necessary for distritrated operating systems to coordinate their actions.

Efrbreation

A distributed system is a collection of loosely coupled processors intercon-
nected by a communication network. From the point of view of a specific
processor in a distributed system, the rest of the processersand their respective
resources are remote, whereas its own resources are locak

The processors in a distributed system may vary in size and function.
They may include small microprocessors, workstations, minicomputers, and
large general-purpose computer systems. These processors are referred to by a
number of names, such as sites, nodes, computers, machines, amd hosts, depending
om the context in which they are mentioned. We mainly use sife to-indicate the
location of a machime and host to refer to a specific system at a site. Generally,
one host at one site, the server, has a resource that another host at another
site, the client (or user), would like to use. A general structure of a distributed
system is shown in Figure 14.1.

There are four major reasons for building distributed systems: resource
sharing, computation speedup, reliability, and communication. In this section, we.
briefly discuss each of them.

14.1.1 Resource Sharing

I a number of differext sites (with different capabilities} zve cormexted to one
another, then a user at one site may be able to use the resources available at
another. For example, a user at site A may be using a laser printer located at
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Figure 14.1 A distributed system.

site B. Meanwhile, a user at B may access a file that resides at A. In general,
resource sharing in a distributed system provides mechanisms for sharing
files at remote sites, processing information in a distributed database, printing
files at remotoe sites, using remote specialized hardware devices (such as a
high-speed array processor), and performing other operations.

14.1.2 Computation Speedup

If a particular computation can be partitioned into subcomputations that
can run concurrently, then a distributed svstem allows us to distribute
the subcomputations among the virious sites; the subcomputations can be
run concurrently and thus provide computation speedup. In addition, if
a particular site is currently overloaded with jobs, some of them may be
moved to other, lightly loaded sites. This movement of jobs is called load
sharing. Automated load sharing, in which the distributed operating system
automatically moves jobs, is not vet common in commercial systems.

14.1.3 Reliability

If one site fails in a distributed system, the remaining sites can continue
operating, giving the system better reliability. If the system is composed of
multiple large autonomous installations (that is, general-purpose computers),
the failure of one of them should not affect the rest. If, however, the system
is composed of small machines, each of which is responsible for some crucial
system function (such as terminal character 1/0 or the file system), then a single
failure may halt the operation of the whole system. In general, with enough
redundancy (in both hardware and data), the system can continue operation,
evervif some of its sites have failed. - '

' The failure of a site must be detected by the system, and appropriate action
may be needed to recover trom the faiture. The system must no longer use the
services of that site. In addition, if the function of the failed site can be taken
over by another site, the system must ensure that the transfer of function occurs
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correctly. Finally, when the failed site recovers or is repaired, mechanisms must
be available to integrate it back into the system smoothly. As we shall see in
Chapters 15 and 16, these actions present difficult problems that have many
possible selutions.

14.1.4 Communication

When several sites are connected to one another by a communication network,
the users at different sites have the opportunity to exchange information, At
a low level, messages are passed between systems, much as messages are
passed between processes in the single-computer message system discussed
in Section 3.4. Given message passing, all the higher-level functionality found
in standalone systems can be expanded to encompass the distributed system.
Such functions include file transfer, login, mail, and remote procedure calls
(RPCS).

The advantage of a distributed system is that these functions can be
carried out over great distances. Two people at geographically distant sites can
collaborate on a project, for example. By transferring the files of the project,
logging in to each other’s remote systems to run programs, and exchanging
mail to coordinate the work, users minimize the limitations inherent in iong-
distance work. We wrote this book by collaborating in such a manner.

The advantages of distributed systems have resulted in an industry-wide
trend toward downsizing, Many companies are replacing their mainframes
with networks of workstations or personal computers. Companies get a bigger
bang for the buck (that is, better functionality for the cost), more flexibility in
locating resources and expanding facilities, better user interfaces, and easier
maintenance.

In this section, we describe the two general categories of network-oriented
operating systems: network operating systems and distributed operating
systems. Network operating systems are simpler to implement but generaily
more difficult for users to access and utilize than are distributed operating
systems, which provide more features.

14.2.1 Network Operating Systems

A network operating system prov ides an environment in which users, who are
aware of the multiplicity of machines, can access remote resources by either
logging in to the appropriate remote machine or transferring data from the
remote machine to their own machines. '

© 14.21.1 Remote Login

An important function of a network operating system is to allow users to log in
remotely. The Internet provides the telnet facility for this purpose. To illustratz
this facility, lets suppose that a user at Westminster College wishes to compute
on “cs.yale.edu,” a computer that is located at Yale University. To do so, the
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user must have a valid account on that machine. To log in remotely, the user
issues the command

telnet cs.yale.edu

This command results in the formation of a socket connection between the
local machine at Westminster College and the “cs.yale edu” computer. After this
connection has been established, the networking software creates a transparent,
bidirectional link so that all characters entered by the user are sent to a process
on “cs.yale.edu” and all the output from that process is sent back to the user. The
process on the remote machine asks the user for a login name and a password.
Once the correct information has been received, the process acts as a proxy for
the user, who can compute on the remote machine just as any local user can.

14.2.1.2 Remote File Transfer

Another major function of a network operating system is to provide a
mechanism for remote file transfer from one machine to another. In such
an environment, each computer maintains its own local file system. If a user at
one site (say, “cs.uvm.edu”) wants to access a file located on another computer
(say, “cs.yale.edu”), then the file must be copied explicitly from the computer
at Yale to the computer at the University of Vermont.

The Internet provides a mechanism for such a transfer with the file transfer
protocol (FTP) program. Suppose that a user on “cs.uvm.edu” wants to copy a
Java program Server. java that resides on "cs.yale.edu.” The user must first
invoke the FTP program by executing

ftp cs.yale.edu

The program then asks the user for a login name and a password. Once
the correct information has been received, the user must connect to the
subdirectory where the file Server. java resides and then copy the file by
executing

get Server.java

In this scheme, the file location is not transparent to the user; users must know
exactly where each file is. Moreover, there is no real file sharing, because a user
can only copy a file from one site to another. Thus, several copies of the same
file may exist, resultng in a waste of space. In addition, if these copies are
modified, the various copies will be inconsistent.

Notice that, in our example, the user at the University of Vermont must
have login permission on “cs.yale.edu.” FTT also provides a way to allow a user
who does not have an account on the Yale computer to copy files remotely. This

Temote copying is accomplished through the “anonymous FIP” method, which

works as follows. The file to be copied (that is, Server. java} must be placed
in a special subdirectory (say, fip) with the protection set to allow the public
to read the file. A user who wishes to copy the file uses the ftp command as
before. When the user is asked for the login name, the user supplies the name
“anonymous” and an arbifrary password. '

Ongce a“onymous login is accomplished, care must be taken by the system
to ensure that this partially authorized user does not access inappropriate
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files. Generally, the user is allowed to access only those files that are in the
directory tree of user “anonymous.” Any files placed here are accessible to
any anonymous users, subject to the usual file-protection scheme used on
that machine. Anonymous users, however, cannot access files outside of this
directory tree. '

The FTP mechanism is implemented in a manner similar to telnet imple-
mentation. There is a daemon on the remote site that watches for connection
requests to the system'’s FIP port. Login authentication is accomplished, and
the user is allowed to execute commands remotely. Unlike the telnet daemon,
which executes any command for the user, the FIP daemon responds only toa
predefined set of file-related commands. These include the following:

¢ get: Transfer a file from the remote machine to the local machine.
» put: Transfer from the local machine to the remote machine.
» 1sordir: List files in the current directory on the remote machine.

e cd: Change the current directory on the remote machine.

There are also various commands to change transfer modes (for binary or ASCIL
files) and to determine connection status. ‘

An important point about telnet and FTP is that they require the user to
change paradigms. FIP requires the user to know a command set entirely
different from the normal operating-system commands. Telnet requires a
smaller shift; The user must know appropriate commands on the remote
system. For instance, a user on a Windows machine who telnets to a UNIX
machine must switch to UNIX commands for the duration of the telnet session.
Facilities are more convenient for users if they do not require the use of a
different set of commands. Distributed operating systems are designed to
address this problem.

14.2.2 Distributed Operating Systems

In a distributed operating system, the users access remote resources in the same
way they access local resources. Data and process migration from one site to
another is under the control of the distributed operating system.

14.2.2.1 Data Migration

Suppose a user on site A wants to access data (such as a file) that reside at site
B. The system can transfer the data by one of two basic methods. One approach
to data migration is to transfer the entire file to site A. From that point on, all
access to the file is local. When the user no longer needs access to the file, a
copy of the file (if it has been modified) is sent back to site B. Even if only a
modest change has been made to a large file, all the data must be transferred.
This mechanism can be thought of as an automated FIP system. This approach
was used in the Andrew file system, as we discuss in Chapter 15, but it was
found to be too inefficient. '
The other approach is to transfer to site A only those portions of the file .

that are actually necessary for the immediate task. If another portion is required
later, another transfer will take place. When the user no longer wants to access
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the file, any part of it that has been modified must be sent back to site B. (Note
the similarity to demand paging.) The Sun Microsystems network file system
(NFS) protocol uses this method (Chapter 15), as do newer versions of Andrew.
The Microsoft SMB protocol (running on top of either TCP/IP or the Microsoft
NetBEUI protocol) also allows file sharing over a network. SMB is described in
Appendix C.6.1.

Clearly, if only a small part of a large file is being accessed, the latter
approach is preferable. If significant portions of the file are being accessed,
however, it is more efficient to copy the entire file. In both methods, data
migration includes more than the mere transfer of data from one site to another.
The system must also perform various data translations if the two sites involved
are not directly compatible (for instance, if they use different character-code
representations or represent integers with a different number or order of bits).

14.2.2.2 Computation Migration

It some circumstances, we may want to transfer the computation, rather than
the data, across the system; this approach is called computation migration. For
example, consider a job that needs to access various large files that reside at
different sites, to obtain a summary of those files. It would be more efficient to
access the files at the sites where they reside and return the desired results to
the site that initiated the computation. Generally, if the time to transfer the data
is longer than the time to execute the remote command, the remote command
shouid be used. .

Such a computation can be carried out in different ways. Suppose that
process I’ wants to access a file at site A. Access to the file is carried out at
site A and could be initiated by an RPC. An RPC uses a datagram protocol
(UD?P on the Internet) to execute a routine on a remote system (Section 3.6.2).
Process PP invokes a predefined procedure at site A. The procedure executes
appropriately and then returns the results to P,

Alternatively, process P can send a message to site A, The operating system
at site A then creates a new process Q whose function is to carry out the
designated task. When process Q completes its execution, it sends the needed
result back to P via the message system. In this scheme, process P may execute
concurrently with process Q and, in fact, may have several processes running
concurrently on several sites.

Both methods could be used to access several files residing at various sites.
One RPC might result in the invocation of another RPC or even in the transfer

. of messages to another site. Similarly, process Q could, during the course of its

execution, send a message to another site, which in turn would create another
process. This process might either send a message back to Q or repeat the cycle.

14.2.2.3 Process Migration

A logical extension of computation migration is process migration. When a
process is submitted for execution, it isnot alwaysexecuted at the site at which
it s initiated. The entire process, or parts of it, may be executed at different
sites. This scheme may be used for several reasons: '
Load balancing. The processes (or subprocesses) may be distributed across
the network to even the workload.
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« Computation speedup. lf a single process can be divided into a number
of subprocesses that can run concurrently on different sites, then the total
process turnaround time can be reduced.

Hardware preference. The process may have characteristics that make it
mote suitable for execution on some specialized processor (such as matrix
inversion on an array processor, rather than on a microprocessor}.

« Software preference. The process may require software that is available
at only a particular site, and either the software cannot be moved, or it i3
less expensive to move the process.

Data access. Just as in computation migration, if the data being used in the
computation are numerous, it may be more efficient to have a process run
remotely than to transfer all the data.

We use two cormnplementary techniques to move processes in a computer
network. In the first, the systerm can attempt to hide the fact that the process has
migrated from the client. This scheme has the advantage that the user does not
need to code her program explicitly to accomplish the migration. This method
is usually employed for achieving load balancing and computation speedup
among homogeneous systems, as they do not need user input to help them
exectite programs remotely.

The other approach is to allow (or require) the user to specify explicitly
how the process should migrate. This method is usually employed when the
process must be moved to satisfy a hardware or software preference.”

You have probably realized that the Web has many aspects of a distributed-
computing environment. Certainly it provides data migration (between a web
server and a web client). It also provides computation migration. For instance,
a web client could trigger a database operation on a web server. Finally, with
Java, it provides a form of process migration: java applets are sent from the
server to the client, where they are executed. A network operating system
provides most of these features, but a distributed operating system makes
them seamless and easily accessible. The result is a powerful and easy-to-use
facility—one of the reasons for the huge growth of the World Wide Web.

o . A N P

There are basically two types of networks: local-area networks (LAN) and
wide-area networks (WAN). The main difference between the two is the way in
which they are geographically distributed. Local-area networks are composed
of processors distributed over small areas (such as a single building or a
number of adjacent buildings), whereas wide-area networks are composed
of a number of autonomous processors disiributed over a large area (such
as the United States). These differences imply major variations in the speed
and reliability of the communications network, and they are reflected in the
distributed operating-system design.

14.3.1 Local-Area Networks

Local-area networks emerged in the early 1970s as a substitute for large
mainframe computer systems. For many enterprises, it is more economical
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to have a number of small computers, each with its own self-contained
applications, than to have a single large system. Because each small computer
is likely to need a full complement of peripheral devices (such as disks
and printers), and because some form of data sharing is likely to occur in
a single enterprise, it was a natural step to connect these small systems into a
network. ‘

LANSs, as mentioned, are usually designed to cover a small geographical
area (such as a single building or a few adjacent buildings) and are generally
used in an office environment. All the sites in such systems are close to one
another, so the communication links tend to have a higher speed and lower
error rate than do their counterparts in wide-area networks. High-quality
(expensive) cables are needed to attain this higher speed and reliability. It is
also possible to use the cable exclusively for data network traffic. Over longer
distances, the cost of using high-quality cable is enormous, and the exclusive
use of the cable tends to be prohibitive.

The most common links in a local-area network are twisted-pair and fiber-
optic cabling. The most common configurations are multiaccess bus, ring,
and star networks. Communication speeds range from 1 megabit per second,
for networks such as AppleTalk, infrared, and the new Bluetooth local radio
network, to 1 gigabit per second for gigabit Ethernet. Ten megabits per second
is most common and is the speed of 10BaseT Ethernet. 100BaseT Ethernet
requires a higher-quality cable but runs at 100 megabits per second and
is becoming common. Also growing is the use of optical-fiber—based FDDI
networking. The FDDI network is token-based and runs at over 100 megabits
per second.

A typical LAN may consist of a number of different computers (from
mainframes to laptops or PDAs), various shared peripheral devices (such

E——y
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application server ~ workstation workstation workstation

MR P osteway

printer laptop - file server

Figure 14.2 Local-area network.
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as laser printers and magnetic-tape drivés), and one or more gateways
(specialized processors) that provide access to other networks (Figure 14.2). An
Ethernet scheme is commonly used fo construct LANs. An Ethernet network
has no central controller, because it is a multiaccess bus, so new hosts can be
added easily to the network. The Ethernet protocol is defined by the IEEE 802.3
standard.

14.3.2 Wide-Area Networks

Wide-area networks emerged in the late 1960s, mainly as an academic research
project to provide efficient communication among sites, allowing hardware and
software to be shared conveniently and economically by a wide community
of users. The first WAN to be designed and developed was the Arpanet. Begun
in 1968, the Arpanet has grown from a four-site experimental network to a
worldwide network of networks, the Internet, comprising millions of computer
systems. :

Because the sites ina WAN are physically distributed over a large geographi-
cal area, the communication links are/,_by default, relatively slow and unreliable.
Typical links are telephone lines, leased (dedicated data) lines, microwave links,
and satellite channels. These communication links are controlled by special
communication processors (Figure 14.3), which are responsible for defining

the interface through which the sites commulnicate over the network, as well
as for transferring information among the various sites.

H
USEl Processes network host
communication F‘ﬁ operating system
subsystem i

communication
processcr

network host

Figure 14.3 Communication processors in a wide-area network.



522

14.4

Chapter 14

* For example, the Internet WAN provides the ability for hosts at geograph-
ically separated sites to communicate with one another. The host computers
typically differ from one another in type, speed, word length, operating system,
and so on. Hosts are generally on LANs, which are, in turn, connected to
the Internet via regional networks. The regional networks, such as NSFnet
in the northeast United States, are interlinked with routers (Section 14.5.2)
to form the worldwide network. Connections between networks frequently
use a telephone-system service called T1, which provides a transfer rate of
1.544 megabits per second over a leased line. For sites requiring faster Internet
access, Tls are collected into multiple-T1 units that work in parallel to provide
more throughput. For instance, a T3 is composed of 28 T1 connections and
has a transfer rate of 45 megabits per second. The routers control the path
each message takes through the net. This routing may be either dynamic, to
increase communication efficiency, or static, to reduce security risks or to allow
communication charges to be computed. )

Other WANs use standard telephone lines as their primary means of com-
munication. Modems are devices that'accept digital data from the computer
side and convert it to the analog signals that the telephone system uses. A
modem at the destination site converts the analog signal back to digital form,
and the destination receives the data. The UNIX news network, UUCP, allows
systems to communicate with each other at predetermined times, via modems,
to exchange messages. The messages are then routed to other nearby systems
and in this way either are propagated to all hosts on the network {public
messages) or are transferred to their destination (private messages). WANSs are
generally slower than LANSs; their transmission rates range from 1,200 bits
per second to over 1 megabit per second. UUCP has been superseded by PPP,
the point-to-point protocol. PPP functions over modem connections, allowing

“home computers to be fully connected to the Internet.

TUOTWIORR T e i

The sites in a distributed system can be connected physically in a variety of
ways. Each configuration has advantages and disadvantages. We can compare
the configurations by using the following criteria:

Installation cost. The cost of physically linking the sites in the system

* Communication cost. The cost in time and money to send a message from
site A to site B

Availability. The extent to which data can be accessed despite the failure
of some links or sites

The various topologies are depicted in Figure 14.4 as graphs whose nodes
correspond to sites. An edge from node A to node B corresponds to a direct
communication link between the two sites. In a fully connected network, each
site is directly connected to every other site. However, the number of links
grows as the square of the number of sites, resulting in a huge installation cost.
Therefore, fully connected networks are impractical in any large system.
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In a partially connected network, direct links exist between some—but
not ali—pairs of sites. Hence, the installation cost of such a configuration is
lower than that of the fully connected network. However, if two sites A and
B are not directly connected, messages from one to the other must be routed
through a sequence of communication links. This requirement results in a
higher communication cost.

If a communication link fails, messages that would have been transmitted
across the link must be rerouted. In some cases, another route through the
network may be found, so that the messages are able to reach their destination.
In other cases, a failure may mean that no connection exists between some pairs
of sites. When a system is split into two (or more) subsystems that lack any
connection between them, it is partitioned. Under this definition, a subsystem
{or partition) may consist of a single node.

The various partially connected network types include tree-structured
networks, ring networks, and star networks, as shown in Figure 14.4. They

fully connected network

) @ O

tree-structured network star network

ring network

Figure 14.4 Network topology.
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have different failure characteristics and installation and communication costs.
Installation and communication costs are relatively low for a tree-structured
network. However, the failure of a single link in such a network can result
in the network’s becoming partitioned. in a ring network, at least two links
must fail for partition to occur. Thus, the ring network has a higher degree of
availability than does a tree-structured network. However, the communication
cost is high, since a message may have to cross a large number of links. In a star
network, the failure of a single link results in a network partition, but one of the
partitions has only a single site. Such a partition can be treated as a single-site
failure. The star network also has a low communication cost, since each site is
at most two links away from every other site. However, if the centrat site fails,
every site in the system becomes disconnected.

oy oy g v e ) I et . ey
Cormrmoavosnon Strootures

Now that we have discussed the physical aspects of networking, we turn to
the internal workings. The designer of a communication network must address
five basic issues:

» Naming and name resolution. How do two processes locate each other to
communicate? o

» Routing strategies. How are messages sent through the network? '
Packet strategies. Are packets sent individuall}'; or as a sequence?

» Connection strategies. How do two processes send a sequence of mes-
sages?

= Contention. How do we resolve conflicting demands for the network’s
use, given that it is a shared resource?

In the following sections, we elaborate on each of these issues.

14.5.1 Naming and Name Resolution

The first component of network communication is the naming of the systems
in the network. For a process at site A to exchange information with a process
at site B, each must be able to specify the other. Within a computer system,
each process has a process identifier, and messages may be addressed with the
process identifier. Because networked systems share no memory, a host within
the system initially has no knowledge about the processes on other hosts.

To solve this problem, processes on remote systems are generally identified
by the pair <host name, identifier>, where host name is a name unique within
the network and identifier may be a process identifier or other unique number
within that host. A host name is usually an alphanumeric identifier, rather than
a number, to make it easier for users to specify. For instance, site A might have
hosts named homer, marge, bart, and, lisa. Barf is certainiy easier to remember
than is 12814831100.

Names are convenient for humans to use, but computers prefer numbers
tor speed and simplicity. For this reason, there must be a mechanism to
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resclve the hust name into a host-id that descnbes the destination svstem
to the networking hardware. This resoive mechanism is similar te: the Nan-
to-address binding that occurs during program compilation, linking, loadin,
and execution (Chapter 8). In the case of host names, two possibilities exisi.
First, every host may have a data file containing the names and addresses ol
all the other hosts reachable on the network (simiilar % binding at compile
time). The probiem with this model is that adding or removing a host fram the
network requires updating the data files on all the hosts. The alternative is to
distribute the information among systens on the network. The network st
then use a protocol to distribute and reerieve the information. This schemoe is
like exccution-time binding. The first method was the original method used on
the Internct; as the Internct grew, however, it becanme untenable, so the second
method, the domain-name system (DNS), is how in use.

DNS specifies the naming structare of the hosts, as well as name-to-address
resolution. iHosts on the Internet are Jogically addressed with o mulipart
name. Namwes progress from the most h}“{‘(iﬁi_‘ to the mast gencral part ot the
address, with periods separating the fields. Porinstance, Ioboes browinode vefers
fo host bolz in the Department of Computer Science at Brown University within
the domain «fu. (Other top-level domains include com for commerdial sites
and org for organizations, as well as a domain for each country connecied
to the network, for svstems specified by country rather than organization
type) Generally, the system resolves addresses by examining the host same
components in reverse order. Lach component has a name server- -siimply
process on a system —that accepts a name and returns the address of the name
server responsible for that name. As the final step, the name server for the host
in question is contacted, and a host-id is returmed. For our example system
bob.cs. brewnedu, the following steps would be takei as result of a request made
by a process on system A to communicate with tolucs.brotiedu:

The kernet of svstem A issues a request Lo the name server for the ofn
domain, asking for the address of the name seever for browinedu. The
name server for the edu domain must be at a known address, so that it
can be queried.

The edu nameserver returns the address of the hostonwhich the broweneds
name server resides.

The kernel on system A then queries the name server at this address and
asks about cs.brown.edn.

An address is returned; and a request to that address for bobos frocon edu
now, finally, returns an Internet address host-id for that host (for example,
128.148.31.100).

This protocal may seem inefticient, but local caches are usually kept at cach
name server to speed the process. For example, the ofn name server would
have broten.edi in its cache and would inform system A that it could resolve
two purtions of the name, returning a pointer to the cs browiredu name server.
Of course, the contents of these caches must be refreshed over time in case
the name scrver is moved or its address changes. o facl, this service 1s so
important that many optimizations have oecurred in the protocol, as well as
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many safeguards. Consider what would happen if the primary edu name server
crashed. It is possible that no edu hosts would be able to have their addresses
resolved, making them all unreachable! The solution is to use secondary,
back-up name servers that duplicate the contents of the primary servers.

Before the domain-name service was introduced, all hosts on the Internet
necded to have copies of a file that contained the names and addresses of each
host on the network. All changes to this file had to be registered at one site
{host SRI-NIC}, and periodically all hosts had to copy the updated file from
SRENIC to be able to contact new systems or find hosts whose addresses had
changed. Under the domain-name service, each name-server site is responsible
for updating the host information for that domain. For instange, any host
changes at Brown University are the responsibility of the name server for
Browncdu and do not have to be reported anywhere else. DNS lookups will
automatically retrieve the updated information because brown edu is contacted
directly. Within domains, there can be autonomous subdomains to distribute
further the responsibility for host-name and host-id changes.

Java provides the necessary API to design a program that maps IP names
to 1P addresses. The program shown in Figure 14.5 is passed an I[P name
(such as “bob.cs.brown.edu™ on the command line and either outputs the
i address of the host or returns a message indicating that the host name could
not be resolved. An TnetAddress is a Java class representing an iP name or
address. The static method getByName () belonging to the InetAddress class
is passed a string representation of an IF name, and it returns the corresponding
IneuvAddress. The program then invokes the getHostAddress() method,
which internally uses DNS to look up the 1P address of the designated host.

Cenerally, the operating system is responsible for accepting from its
processes a message destined for <host name, identifier > and for transferring
that message to the appropriate host. The kernel on the destination host is then

Skk
* Usage: java DNSLookUp <IP names
* 1.e. java DNSLockUp www.wiley.com
* /
public class DNSLookUp {
public static void main(String[] args) {
InetAddress hectAddress;

try |

lhostAddress = InetAddress.getByName (args[0]);
System.out .printlni{hostAddress.getHostAddress () ;

catch (UnknownHostException uhe) |
System.err.println{"Unknown host: " + args[0]);

Figure 14.5 Java program illustrating a DNS lookup.
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responsible for transferring the message to the process named by the identifier.
This exchange is by no means trivial; it is described in Section 14.54.

14.5.2 Routing Strategies

When a process at site A warnts to communicate with a process at site B, how
is the message sent? If there is only one physical path from A to B (such as
in a star or tree-structured network), the message must be sent through that
path. However, if there are multiple physical paths from A to B, then several
routing options exist. Each site has a routing table indicating the alternative
paths that can be used to send a message to other sites. The table may include
information about the speed and cost of the various communication paths,
and it may be updated as necessary, either manually or via programs that
exchange routing information. The three most common routing schemes are
fixed routing, virtual routing, and dynamic routing.

Fixed routing. A path from A to B is specified in advance and does not
change unless a hardware failure disables it. Usually, the shortest path is
chosen, so that communication costs are minimized.

Virtual routing. A path from A to Bis fixed for the duration of one session.
Different sessions involving messages from A to B may use different paths.
A session could be as short as a file transfer or as long as a remote-login
period.

Dynamic routing. The path used (v send a message from site A to site
B is chosen only when a message is sent. Because the decision is made
dynamically, separate messages may be assigned different paths. Site A
will make a decision to send the message to site C; C, in turn, will decide
to send it fo site I, and so on. Eventually, a site will deliver the message
to B. Usually, a site sends a message to another site on whatever link is the
least used at that particular time.

There are tradeoffs among these three schemes. Fixed routing cannot adapt
to link failures or load changes. In other words, if a path has been established
between A and B, the messages must be sent along this path, even if the path
is down or is used more heavily than another possible path. We can partially
remedy this problem by using virtual routing and can avoid it completely by
using dynanuc routing. Fixed routing and virtual routing ensure that messages
from A to B will be delivered in the order in which they were sent. In dynamic
routing, messages may arrive out of order. We can remedy this problem by
appending a sequence number to each message.

Dynamic routing is the most complicated to set up and run; however, it is
the best way to manage routing in complicated environments. UNIX provides
both fixed routing tor use on hosts within simple networks and dynamic
routing for complicated network environments. it is also possible to mix the
two. Within a site, the hosts may just need to know how to reach the system that
connects the local network to other networks (such as company-wide networks
or the Internet). Such a nede is known as a gateway. Each individual host has
a static route to the gateway, although the gateway itself uses dynamic routing
to reach any host on the rest of the network,
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Areuter s the entify within the compitter network responsible for routing
mcssaqu A router can be a host compuler with routing software or a
special-purpose device. Either way, a router must bave at least two network
connections, or else it would have nowhere to route messages. A router decides
whother any given message needs te be passed from the network on which
it is received to any other network connected o the router. it makes this
determination by eramining the destination Internet address of the message.
The router checks it tables to determine the focation of the destination Post, o
at least of the network o whiich it will send the message toward the destination
host. In the case of static routing. this tabie is changed only by imanual update
(a new rile is loaded onto the router}). With aynamic routing, a routing protocel
is used between reuters to inform them of network changes and to atllow them
to update their rouding tables actomatically. Cateways and routers typicaliy
are dedicated hardware Jevices that ran code osut of firmware.

14.5.3 Packet Straiegies

Messages are generally of variable length. To simplify the system design,
we ¢ (‘mm(miv implement communication with fixed- -length messages called
packets, frames, or datagrams. A communication implemented in one packet
can be sent to its destination in a connectionless message. A connectionless
message can be unreliable, in which case the sender has no guarantee that, and

cannot telt whether, the packet reached its destination. Alternatively, the packet
can be reliable; usually, in this case, a packet is returned from the destination
indicating that the packet arvived. (0t course. the return packet could be iost
along the way.} If a message is too long Lo rit within one packet, or if the packets
n(’ed to fow back and tnrth between tl‘e‘ two communicators, a connection is
established to allow the reliable exchange of multiple packets.

14.5.4 Connection Strategies

Once messages are able to reach their destinations, processes can institute
communications sessions to exchange information. Pairs of processes that
want lo communicate over the network can be connected in a number of wavs,
The three most common schemes are circuit switching, message switching,
and packet switching.

Circuit switching. If two processes want to communicate, a permanent
physical link is established between them. This link is allocated for the
duration of the communication session, and no other process can use
that link during this period (even if the two processes are not actively
communicating for a while). This scheme is similar to that used in the
telephone sysiem. Once a communication line has been opened between
two parties {that is, party A calls party B), no one else can use this circuit
until the communication is terminated explicitly (for example, when the
parties hang up).

-~ Message switching. If two processes want to communicate, a temporary
link is established for the duration of one message transfer. Physical
links are allocated dynamically among corvespondents as needed and
are allocated for only short periods. Each message 15 a block of data
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with system informiaricn —sach as the source, the destation, and error-
correction codes (LCC)—- thalallows the communication network to deliver
the message to the destination correctly. This scheme is similar to the
post-ofiice mailing system. Lach letter is 0 message that contains both the
destination address ang source (return’ address, Many messages (from
different users) can be shipped over the same link.

Packet switching. (e I(‘-gica’. message mav have to be divided into o
numbcr of pdck.‘;ts. Each [RED ket may ke sent to its destination vaarate}
and each therefore must include a source and destination address with its
data. Furthermore, the various packets may fake different paths through
the network. The pumtw must be reassembled inio messages as they
arrive. Note that it is nict harmful for data to be broken into parkcts
possibly routed separately, and reassembled at the destination. Breaking
up an audio signal (say, o telephone communication), in contrast, could
cause great confusion if it was not done carefullv.

There are obvious tradeoffs among these schemes. Circait switching re qmres
substantial set-up tume and mayv waste network bandwidth, but it incurs
less overhead for shipping each mes sage. Comversely, message and packet
switclhiing require less set-up Hme but incur more overhead per message. Also,
in packet switching, each moessage must oo divided into pockets and later
reassembled. Packet swiching is thv Mmethod mast commonly used on data
networks because it makes the best use of network bandwidth’

14.5.5 Contention

Dgpendmi., on the network tapology, a link may conneet more than two sites
in the computer network, and several of these sites inay want to transmit
information overa linik simultanevusly. This situation occurs mainlvinaring or
multiaccess bus network. Inthis case, the transmitted information may become
scrambiled. If it does, it must be discarded; and the sites must be notified about
the problem so that they can retransmit the information. If no special provisions
are made, this situation may be repeated, resulling in degraded performance.
Several techniques have btl‘l tde ciup «d o avoid repeated co! hs:(ma, including
vollision detection and token Passing.

CSMA/CD. Before Lransmitting 0 message over a link, a site must isten
to determine whethor anctiher message s currently being transmitted
over that link: this techoigue is called carrier sense with multiple access
(CSMA). If the link is free, the site can start trar=mitting. Otherwise, it must
wait (and continue to listen) until the Hink is free. [F fwo or more sites begin
transm:ttmg at exactlv the same time (cach thinking that no other site s
using the fink), then t}wv will register o collision detection (CD) and will
stop transmitting. Fach site will try again after some random time interval.
The main problem with this ap‘pmﬂc Vs that, when the system is very
busy, many codlisions may accur, and thus performance mav be degraded.
Nevertheless, CSMA /U has been ased successfully inthe | thernet sv stemn,
the most common local area network systern, One strate gy for hmllmg_, the
number of collisions 1 to fimit the number of hosts per Ethernet netw ork.
Adding more hosts o a congested network could resalt in poor network
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throughput. As systems get faster, they are able to send more packets per
time segment. As a result, the number of systems per Ethernet network
generally is decreasing so that networking performance is kept reasonable.

Token passing. A unique message type, known as a token, continuously
circulates in the system {usually a ring structure). A site that wants to
transmit information must wait until the token arrives. It removes the
token from the ring and begins to transmit its messages. When the site
completes its round of message passing, it retransmits the token, This
action, in turn, allows another site to receive and remove the token and 1o
start its message transmission. If the token gets lost, the system must then
detect the loss and generate a new token. It usually does that by declaring
an electon to choose a unique site where a new token will be generated.
Later, in Section 16.6;, we present one election algorithm. A token-passing
scheme has been adopted by the IBM and HP/ Apollo systems. The benefit
of a token-passing network is that performance is constant. Adding new
sites to a network may lengthen the waiting time for a token, but it will not
cause a large performance decrease, as may happen on Ethernet. On lightly
Jjoaded networks, however, Ethernet is more efficient, because systems can
send messages at any time,

When we are designing a communication network, we must deal with the
inherent complexity of coordinating asynchronous operations communicating
in a potentially stow and error-prone environment. In addition, the systems on
the network must agree on a protocol or a set of protocols for determining
host names, locating hosts on the network, establishing connections, and
so on. We can simplify the design problem (and related implementation)
by partitioning the problem into multiple layers. Each layer on one system
communicates with the equivalent laver on other systems. Typically, each layer
has its own protocols, and communication takes place between peer layers
using a specific protocol. The protocols may be implemented in hardware or
software. For instance, Figure 14.6 shows the fogical communications between
two computers, with the three lowest-level layers implemented in hardware.
Following the International Standards Oreanization (IS0), we refer to the layers
as follows:

Physical layer. The physical faver is responsible for handling both the
mechanical and the electrical details of the physical transmission of a bit
stream. At the physical layer, the commurnucating systems must agree on
the clectrical representation of a binary 0 and 1, so that when data are
sent as a stream of electrical signals, the receiver is able to interpret the
data properiy as binary data. This layer is implemented in the hardware
of the networking device,

Data-link layer. The data-tink layer is responsible for handling frames, or
fixed-length parts of ackets, including any error detection and recovery
that occurred in the physical layer.
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Figure 14.6 Two computers communicating via the 1SO network model.

Network layer. The network layer is responsible for providing connec-
tions and for routing packets in the comumunication network, including
handling the addresses of outgoing packets, decoding the addresses
of incoming packets, and maintaining routing information for proper
response to changing load levels. Routers work at this layer.

Transport layer. The transport layer is responsible for low-level access
to the network and for transfer of messages between clients, including
partitioning messages into packets. maintaining packet order, controlling
flow, and generating physical addresses.

Session layer. The session layer is responsible for implementing sessions,
OT process-to-process communication protocols. Typically, these protocols
are the actual communications for remote logins and for file and mail
transfers.

Presentation layer. The presentation layer is responsible for resolving the
differences in formats among the various sites in the network, including
character conversions and half duplex—full duplex modes (character
echoing).

Application layer. The application layer is responsible for interacting
directly with users. This layer deals with file transfer, remote-iogin
protocols, and electronic mail, as well as with schemas for distributed
databases.

Figure 14.7 summarizes the 1SO protocol stack—a set of cooperating
protocols—showing the physical flow of data. As mentioned, logically cach
layer of a protocol stack cornmunicates with the equivalent layer on other
systems. But physically, a message starts at or above the application laver and
is passed through each lower level in turn. Each layer may medify the message
and include message-header data for the equivalent layer on the receiving
side. Ultimately, the message reaches the data-network layer and is transterred
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Figure 14.7 The IS0 protecs! stack.

as one of more packeis (Figure 14.8). The data-link layer of the target system
receiy os these d.zm, and the message 1s moved up through the protocol stack;
it s analvsed, moditied, and stripped of headers as it progresses. It finally
reaches the application layer for use by the receiv ingr process,

The SO rodel tormalizes some of the earlier work done in network
rrotocolsbutvoasdey cloped m the late 1970s and is currently not in widespread
v Perhaps the mostwidely auop{cd protovol stack s the TCP /P model, which
has been adopted by v Ctallv gl Internet sites. The 1T /1P protocol stack
has fewer lavers than does the 10 model. Theoretically, because it combines
severel tunctions in each laver, 1t is more ditficuit to implement but more
ctficient than 150 networking. The relationship between the 150 and T P/
inodets is shown in Figure '-L 9. The 1C0/ 0P applimrion layer identifies several
protocols in widespread use in the Internet, including HTTP, FIE, Telnet, DNS,
and sMTP. The transport taver wentifies the unmhdbie conndéctionless user

datagram protocol (UDP) and the reliable, connection-oriented transmission
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control protocol (TCP). The Internet protocol (197} is respuonsible for rouvting (0
datagroms through the Interncet. The 7O model does not formaliv identify
a tink or physical layer, allowing TCP/ P trattic o run across any physical
neiwork. In Section 149, we consider the TGP/ 1 mode! ranning over an
Ethernet network.
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Figure 14.9 The IS0 and TCP/P protocol stacks.
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Chapter 14

A distributed system may suffer from various types of hardware failure. The
failure of a link, the failure of a site, and the loss of a message are the most
common types. To ensure that the system is robust, we must detect any of these
failures, reconfigure the system so that computation can continue, and recover
when a site or a link is repaired.

14.7.1 Failure Detection

In an environment with no shared memory, we are generally unable to
differentiate among link failure, site failure, and message loss. We can usually
detect only that one of these failures has occurred. Once a failure has been
detected, appropriate action must be taken. What action is appropriate depends
on the particular application.

Te detect link and site failure, we use a handshaking procedure. Suppose
that sites A and B have a direct physical link between them. At fixed intervals,
the sites send each other an l-am-up message. If site A does not receive this
message within a predetermined time period, it can assume that site B has
failed, that the link between A and B has failed, or that the message from B
has been lost. At this point, site A has two choices. It can wait for another time
period to receive an Fan-up message from B, or it can send an Are-you-up?
message to B.

[f time goes by and site A still has not received an f-am-up message, or if site
A has sent an Are-you-up? message and has not received a reply, the procedure
can be repeated. Again, the only conclusion that site A can draw safely is that
some type of failure has occurred.

Site A can try to differentiate between link failure and site failure by sending
an Arc-you-up? message to B by another route (if one exists). If and when B
receives this message, it immediately replies positively. This positive reply tells
A that B is up and that the failure is in the direct link between them. Since we
do not know in advance how long it will take the message to travel from A to B
and back, we must use a time-out scheme. At the time A sends the Are-you-up?
message, it specifies a time interval during which it is willing to wait for the
reply from B.If A receives the reply message within that time intervai, then it
can safely conclude that B is up. If not, however (that is, if a time-out occurs),
thei A may conclude only that one or more of the following situations has
occurred:

Site B is down.

The direct link (if one exists) from A to B is down.
The alternative path from A to B is down,

The message has been lost,

Site A cannot, however, determine which of these events has occurred.

14.7.2 Reconfiguration

Suppose that site A has discovered, through the mechanism described in the
previous section, that a failure has occurred. It must then initiate a procedure



14.8

14.8 - 535

that will allow the system to reconfigure and to continue its normal mode of
operation.

If a direct link from A to B has failed, this informaticn must be broadcast to
every site in the system, so that the various routing tables can be updated
accordingly.

If the system believes that a site has failed (because that site can be reached
no longer), then all sites in the system must be so notified, so that they
will no longer attempt to use the services of the failed site. The failure of a
site that serves as a central coordinator for some activity (such as deadlock
detection) requires the election of a new coordinator. Similarly, if the failed
site is part of a logical ring, then a new logical ring must be constructed.
Note that, if the site has not failed (that is, if it is up but cannot be reached),
then we may have the undesirable situation where two sites serve as the
coordinator. When the network is partitioned, the two coordinators {(each
for its own partition) may initiate conflicting actions. For example, if the
coordinators are responsible for implementing mutual exclusion, we may
have a situation where two processes are executing simultaneousty in their
critical sections.

14.7.3 Recovery from Failure

When a failed link or site is repaired, it must be integrated into the system
gracefully and smoothlyv.

Suppose that a link between A and B has failed. When it is repaired,
both A and B must be notified. We can accomplish this notification by
continuously repeating the handshaking procedure described in Section
14.7.1.

Suppose that site B has failed. When it recovers, it must notify all other sites
that it is up again. Site B then may have to receive information from the
other sites to update its local tables; for example, it may need routing-table
information, a list of sites that are down, or undelivered messages and
mail. If the site has not failed but snmp]v could not be reached, then this
information is still required.

Making the multiplicity of processors and storage devices transparent to the
users has been a key challenge to many designers. Ideally, a distributed system
should look to its users like a conventional, centralized system. The user
interface of a transparent distributed svstem should not distinguish between
Jocal and remote resources. That s, users should be able to access remote
reseurces as though these resources woere local, and the distributed system
should be rxsponsible for locating the resources and for arranging for the
appropriate interection.

Another aspect of transparency s user mobility, it would be convenient
to allow users to log into anv machine in the svstem rather than forcing
thern to use a specific machine. A transparent distributed system facilitates
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user mobility by bringing over the user’s environment (for example, home
directory) to whvn ver she logs in. Both the Andrew tile system from CMU and
Project Athena from MIT provide this functionality on a large scale; NFS can
provide it on a smaller scale.

Another designissuc involves fauti tolerance. We use the term fauldt toleriner
in a broad sense. Communication faults, machine tatlures (of tvpe fail-stop).
storage-device crashes, and decays of storage media sbould all be tolerated to
some extent. A fault-tolerant system should continue to function, perhaps in
a degraded form, when faced with these failures. The degradation can be i
performance; in functionality, or in both. It should be proportional, however,
to the failures that cause it A sysiem that grinds 0 a halt when ondv a fow of
its componenis fail is certainly riot fault tolerant. Unfortunately, fault tolerance
is difficult to implement. Most commercial systems provide only limited fault
tolerance. Forinstance, the DEC VAX cluster allows multiple computers to share
a set of disks. 1f a svstem crashes, users can still access their information from
another system. Of course, if a disk fails, all systems will lose access. But in
this case, RAND can ensure continued access to the data even in the event of a
failure (Section 12.7}.

Stilf another issue is scalability —the capability of a system to adapt to
increased service load. Svstems have bounded resouices and can become
completely saturated under increascd load. For e aple, regarding a file
system, saturation occurs erther swhen a server’s OPU runs at a high utilization
rate or when disks are almost tuli. Sealability is a relative property, butitean be
measured accurately. A scalable systom reacts more gracetully to increased load
than does a nonscalable one. First, its performance d(* reades more moderately;
and second, its respurces reach o saturated state la%cr. Even perfect desngn
cannotaccommodate anover-growing load. Adding new resources mnght solve
the problem, but it might generare additional indirect foad on other resourees
{for example, adding machines 1o a distiibuted svstom can clog the network
and increase service loads) Fven worse, expanding the system can call for
expensive design modifications. A scalabie syslem should have the potential
to grow without these problems, In a distributed sy-tem, the abifity to scale
up graccfully is of speciat importance, since expanding the network by adding
new machines or interconnecting two networks is commonplace. In short, a
ccalable design =hould withstand bigh service lead. accommodale growth of
the user community, and enable simple integration ot added resources.

Fault tolerance nd scalability are wlaled to cach ether. A heavily loaded
compenent can become paraly vl and behav e like a fau Ity component. Also,
shifting the load from o faulty component to inat camponent’s backup can
saturate the latter. Generally, Ravi g spate lesources is esscnhal for ensurivg:
reliability as well as for handlm;; peak mads wracefully. Aninherent ad- antdg-:
of a distributed system is a potential for fault tolerance and scalability pecause
of the multiplicity of resources. However, inappropriate design can abscure
this potential, Fauli-tolerance and scalabidity considerations call ror a design
demonstrating distribution of control and data.

Very large-scale distributed systems, te o great extent, are stili onlv
theoretical. No magic guidelines ensure the scalability of a system. It is casier
to point out why current designs are nef scatable. We next discuss several
designs that pose problems and propose possible solutions, ali in the context
of scajabilitv.
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Omne principle tor designing very large-scale svstems is that the service
demand from any component of the svstent should be bounded by a constant
that is independent of the number of nodes in the svstem. Any service
mechanism whose Ivad demand is proportional to the size of the syqtcm is
destined to become clogged once the system grows bevond a certain size.
Adding morc resources wilt not alleviate such a problem. The capacity of this
mechanism simpiv limits the growth of the svstem.

Central control schemes and central resources should not be used to
build scalable (and fault-tolerant) systems. Examples of centralized entities are
ceniral authentication servers, central naming servers, and central file servers.
Centralization is a form of functional asymmetry among machines constituting
the system. The ideal alternative is a tunctionally symmetric configuration; that
is, all the component machines have an equal role in the operation of the system,
and hence each machine has some degroc of auionomy, Practically, itis virtually
impossible to compiy with sucha principle. For instance, incorporating disk!ess
machines vielales hinctional symmetry, since the workstations depend on a
ces ral dish. However, autonomy and symmetry are important goals to which
we should aspire.

The practical approximation of symmetric and autonomous confi;.,urati(m
is clustering, in which the system is partivoned inte a collection of semi-
autonomaous clusters. A cluster consists of a set of machines and a dedicated
cluster server. So ihot cross-cluster resource references are relatively infrequent,
each cluster server should satisty requiests of its own machines most of the time.
Of course, this scheme depends on the ability to locatize resource references
and to place the comiponent units appropriately. If the cluster is well balanced
—that is, if the server in charge sufttices to satisfy all the cluster demands—it
can be used as a modular building block to scale up the system,

Deciding on the process structure of the server is a major problem in
the design of any service. Servers are supposed to operate efficiently in peak
periods, when hundreds of active clients need to be served simultaneously. A
single-process server is certainly nol a good choice, since whenever a request
necessitates disk 10, the whole service will be blocked. Assigning a process for
each client is a better choice; however, the expense of frequent context swilches
between the processes Ll'-it be considered. A related problem occurs because
all the server processes need to share information.

One of the best .solut]ons for the server architecture is the use of ightweight
processes, or threads, which we discussed in Chapter 4. We can think of a group
of lightweight processes as multiple threads of control associated with some
shared resources. Usually, a lightweight process is not bound to a particular
client. Instead, it serves single requests of different clients. Scheduting of
threads can be preemptive or nonpreemptive. It threads are allowed to run
to completion (nonpreemptivel, then their shared data do not need to be
protected explicitly. Otherwise, some explicitlocking mechanism must be used.
Clearly, some form of lightweight-process scheme is essential if servers are to
be scalable.

We nowy retuwrn to the name-resolution issue raised in Section 14.5.1 and
examine its operation with respect to the TCP/1P protocot stack on the Internet,
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We consider the processing needed to transfer a packet between hosts on
different Ethernet networks.

Ina TCP/IP network, every host has aname and an associated 32-bit Internet
number {or host-id). Both of these strings must be unique; and so that the
name space can be managed, they are segmented. The name is hierarchical (as
explained in Section 14.5.1), descvibing the host name and then the organization
with which the host is associated. The host-id is split into a network number
and a host number. The proportion of the split varies, depending on the size of
the network. Once the Internet administrators assign a network number, the
site with that number is free to assign host-ids.

The sending system checks its routing tables to locate a router to send the
packet on its way. The routers use the network part of the host-id to transfer
the packet from its source network to the destination network. The destination
system then receives the packet. The packet may be a complete message, ot it
may just be a component of a message, with more packets needed before the
message can be reassembled and passed to the TCP/UDP layer for transmission
to the destination process.

Now we know how a packet moves from its source network to its
destination. Within a network, how does a packet move from sender (host
or router) to receiver? Every Ethernet device has a unique byte number, called
the medium access control (MAC} address, assigned to it for addressing. Two
devices on a LAN communicate with each other only with this number. If a
system needs to send data to another system, the kernel generates an address
resolution protocol (ARP) packet containing the 11’ address of the destination
system. This packet is broadcast to all other systems on that Ethernet network.

A broadcast uses a special network address (usually, the maximum
address) to signal that all hosts should receive and process the packet. The
broadcast is not re-sent by gateways, so only systems on the local network
receive it. Only the system whose 1P address matches the 1P address of the ARP
request responds and sends back its MAC address to the system that initiated
the query. For efficiency, the host caches the 1°P-MAC address pair in an internal
table. The cache entries are aged, so that an entry is eventually removed from
the cache if an access to that system is not required in a given time. In this way,
hosts that are removed from a network are eventually forgotfen. For added
performance, ARP entries tor heavily used hosts may be hardwired in the ARP
cache.

Once an Ethernet device has announced its host-id and address, commu-
nication can begin. A process may specify the name of a host with which to
communicate. The kernel takes that name and determines the Internet number
of the target, using a DNS lookup. The message is passed from the application
layer, through the software layers, and to the hardware layer. At the hardware
layer, the packet (or packets) has the Ethernet address at its start; a trailer
indicates the end of the packet and contains a checksum for detection of packet
damage (Figure 14.10). The packet is placed on the network by the Ethernet
device. The data section of the packet may contain sore or all of the data of
the original message, but it may also contain some of the upper-level headers
that compose the message. In other words, all parts of the original message
must be sent from source to destination, and all headers above the 802.3 layer
{data-link layer) are included as data in the Ethernet packets.
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bytes
7 preambie—start of packet | each byte pattern 10101010
1 start of framie delimlier . | pattern 10101011
20rg destination.addregs:: . . | Ethernet address or broadcast
20r6 source addresy Ethernet address
2 length of data secion | length in bytes
4
0-1500 data message data
0-46 | pad {optionah} ~ message must be » 63 bytes long
4 frame checksum for error detection

Figure 14.10 An Ethernet packet.

If the destination is on the same local network as the source, the system
can look in its ARP cache, find the Ethernet address of the host, and place the
packet on the wire. The destination Ethernet device then sees its address in the
packet and reads in the packet, passing it up the protocol stack.

If the destination system is on a network different from that of the source,
the source system finds an appropriate router on its network and sends the
packet there. Routers then pass the packet along the WAN until it reaches its
destination network. The router that connects the destination network checks
its ARP cache, finds the Ethernet number of the destination, and sends the
packet to thal host. Through all of these transfers, the data-link-laver header
may change as the Ethernet address of the next router in the chain is used, but
the other headers of the packet remain ihe same until the packer is received
and processed by the protocol stack and finally passed to the receiving process
by the kernel.

1410

A distributed system is a collection of processors that do not share memory or
a clock. Instead, each processor has its own local memory, and the processors
communicate with one another through various communication lines, such
as high-speed buses and telephone lines. The processors in a distributed
system vary in size and function. They may include small microprocessors,
workstations, minicomputers, and large general-purpose computer systems.
The processors in the system are connected through a communication
network, which can be configured in a number of ways. The network may
be fully or partially connected. It may be a tree, a slar, a ring, or a multiaccess
bus. The communication-network design must include routing and connection
strategies, and it must solve the problems of contention and security.
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A distributed svstem provides the user with access to the resources
the system provides. Access to a shared resource can be provided by data
niigration, computation migration, or process migration.

Protocol stacks, as specified by network layering models, massage the
message, adding information to it to ensure that it reaches its destination,
A naming svstem such as DNS must be used to transiate from a host name
to a network address, and another protocol {such as ARI) may be needed
to transtate the network number to a network device address (an Ftheinet
address, for in:-.h‘mm%. If systems are located on separate networks, routers are
needed 1o pass packets from source network to destination network.

A distributed system may suffer from various types of hardware failure.
For a distributed system to be fault tolerant, it must detect hardware failitres
and reconfigure the system. When the failure is repaired, the svstem niust be
recontigured again.

141 What is the difference between computation migration and process
migration? Which is easier to ‘mplement, and why?

14.2  Contrast the various network topologies in terms ot the following
attributes:

a. Reliability

I+ Available bandwidth for concurrent communications
¢ Installation cost

d. Load balance in routing responsibilities

14.3  Explain why doubling the speed of the systems on an Ethernet segment
may result in decreased network performance. What changes could
help solve this probiem?

14.4 What arc the advaniages of using dedicated hardware devices for
routers and gateways? What are the disadvantages of using these
devices compared with using gencral-purpose computers?

145 Name servers are organized in a hicrarchical manner What is the
purpose of using a hiererchical organization?

14.6  Consider a network layer that senses collisions and retransmits imme-
diately on detection of a collision. What probiems could arise with this
strategy? How could they be rectified?

14.7  What are the implications of using a dynamic routing strategy on
application bebavior? For what type of applications is it beneficial to
use virtual routing instead of dynamic routing?

14.8  Run the program shown in Figure 14.5 and determine the 1P addresses
of the following host names:

* www.wilev.com



541

* www.cs.yale.edu

* www.javasoft.com

* www.westminstercollege.edu
*» www.ietf.org

149 The original HTTP protocol used TCP/IP as the underlying network
protocol. For each page, graphic, or applet, a separaté TCP session was
constructed, used, and torn down. Because of the overhead of building
and destroying TCP/IP connections, performance problems resulted
from this implemeutation method. Would using UDP rather than TCP
be a good alternative? What other changes could you make to improve
HTTP performance?

14.10  Of what use is an address-resolution protocol? Why is it better to use
such a protocol than to make each host read each packet to determine
that packet’s destination? Does a token-passing network need such a
protocol? Explain your answer.

Tanenbaum [2003], Stallings [2000a], and Kurose and Ross [2005] provided
general overviews of computer networks. Williams [2001] covered computer
networking from a computer-architecture viewpoint.

The Internet and its protocols were described in Comer [1999] and Comer
[2000]. Coverage of TCP/IP can be found in Stevens [1994] and Stevens [1995].
UNIX network programming was described thoroughly in Stevens [1997] and
Stevens [1998].

Discussions concerning distributed operating-system structures have been
offered by Coulouris et al. [2001] and Tanenbaum and van Steen [2002],

Load balancing and load sharing were discussed by Harchol-Balter and
Downey [1997] and Vee and Hsu [2000]. Harish and Owens [1999] described
load-balancing DNS servers. Process migration was discussed by Jul et al.
[1988], Douglis and Qusterhout [1991], Han and Ghosh [ 98] and Milojicic
et al. [2000]. Issues relating to a distributed virtual machine for distributed
systems were examined in Sirer et al. {1999].






